Homework 3: StackExchange

Name: Chitra Mukherjee

The 13 problems that I completed are: 1, 2, 3, 4, 5, 6, 7, 8, 12, 13, 14, 15, 16 Questions that I partially
completed and showed all my work for but not quite done: 9, 10, 18

We need to install the necessary libraries and packages.

if ("DBI" %in}% rownames(installed.packages()) == FALSE) {
install.packages("DBI")

}

if ("RSQLite" %in’, rownames(installed.packages()) == FALSE) {
install.packages("RSQLite")

}

library (DBI)

library(RSQLite)

We will now create the database connection so we can see the format of data in our StackExchange database.

cur_dir = './' #current directory ts STA141B folder
print (getwd())

[1] "/Users/chitramac/Desktop/STA 141B"

db_filepath = pasteO(cur_dir, 'stats.stackexchange.db')
db = dbConnect(SQLite(), db_filepath)
print("List of all the table names in our database:")

[1] "List of all the table names in our database:"

dbListTables (db)

[1] "BadgeClassMap" "Badges" "CloseReasonMap"
[4] "Comments" "LinkTypeMap" "PostHistory"

[7] "PostHistoryTypelId" "PostLinks" "PostTypeIldMap"
[10] "Posts" "TagPosts" "Users"

[13] "VoteTypeMap" "Votes"

Questions

Overall Notes on the Tables

In the Posts table: - Userld: Id of the user who posted a comment, question, answer, etc. - Parentld: Each
answer has a Parentld that identifies the question to which it is an answer (questions don’t have a parent id
since they are the parent so that field is empty) - Id: Id of the post itself

1. How many users are there? This question will require reading in the table called Users.

I found the distinct Id values since that would associate with the unique Ids rather than depending on unique
names. This is because the Id values correlate to each row in the table, and these are unique.

I am considering the number of Users to be the unique number of IDs that there are in the Users table.

I didn’t want to count the number of unique DisplayNames since I thought that there could be more than
one name for accounts (for spam accounts, for example).

Although the DisplayName would most likely need to also be unique as well since stack overflow wouldn’t
want duplicate names for users, it felt safer to rely on Ids for unique values since each user would be associated
with 1 ID.

users_db = dbReadTable(db, "Users")
print("Column names in the Users table: ")

[1] "Column names in the Users table: "

print (colnames (users_db))

[1] "Iq" "Reputation" "CreationDate" "DisplayName"
[5] "LastAccessDate" "WebsiteUrl" "Location" "AboutMe"
[9] "Views" "UpVotes" "DownVotes" "AccountId"

head(users_db)

Id Reputation CreationDate DisplayName LastAccessDate
1 -1 1 2010-07-19T06:55:26.860 Community 2010-07-19T06:55:26.860
2 2 101 2010-07-19T14:01:36.697 Geoff Dalgas 2019-02-07T22:01:05.890
3 3 101 2010-07-19T15:34:50.507 Jarrod Dixon 2019-02-07T16:22:42.717
4 4 101 2010-07-19T19:03:27.400 Emmett 2016-11-24T19:37:25.313
5 5 12131 2010-07-19T19:03:57.227 Shane 2022-12-07T19:30:33.150
6 6 832 2010-07-19T19:04:07.647 Harlan 2022-07-14T17:07:11.783
#it WebsiteUrl Location

1 http://meta.stackexchange.com/ on the server farm

2 http://stackoverflow.com Corvallis, OR

3 http://jarroddixon.com Johnson City, TN, USA

4 http://minesweeperonline.com San Francisco, CA

5 http://www.statalgo.com New York, NY

6 http://www.harlan.harris.name Brooklyn, NY, USA

##

1

2

3

4

5 <p>Quantitative researcher focusing on statistics and machine learning methods in finance. Primari
6

Views UpVotes DownVotes AccountId

1 2713 17774 9322 -1

2 47 3 0 2

3 47 23 0 3

4 23 0 0 1998

5 2089 684 5 54503

6 214 65 0 46050

print ("Number of rows in the Users table:")

[1] "Number of rows in the Users table:"

print(length(users_db$Id))

[1] 321677

q = "SELECT COUNT(DISTINCT Id) FROM Users"
dbGetQuery (db, q)

COUNT(DISTINCT Id)
#i#t 1 321677

There are 321,677 users.

2. How many users joined since 20207 (Convert the CreationDate to a year) This question
will require reading in the Users table. I used this website to help me convert to a year: https://www.
neonscience.org/resources/learning-hub/tutorials/dc-convert-date-time-posix-r.

We will specifically get data from the CreationDate column and convert it into POSIXct class so we can

extract data which is in a certain year range.

dateData = dbGetQuery(db, "SELECT CreationDate FROM Users")
dateData$CreationDate = as.POSIXct(strptime(dateData$CreationDate, "RY"))
head(dateData)

CreationDate

1 2010-05-22
2 2010-05-22
3 2010-05-22
4 2010-05-22
5 2010-05-22
6 2010-05-22
years = data.frame(as.numeric(strftime(dateData$CreationDate, "%Y")))

print ("Number of users who joined since 2020:")

[1] "Number of users who joined since 2020:"

print(length(which(years >= 2020)))

[1] 100796

There are 100,796 users that joined since 2020.

We can also do this in sequel: T used this website to help me filter based on a date. https://stackoverflow.
com/questions/9532668/list-rows-after-specific-date https://stackoverflow.com/questions/658395 /find-the-
number-of-columns-in-a-table#:~:text=Query %20t0%20count %20the %20number,o0f%20columns %20you%20want %20ret urne

https://www.neonscience.org/resources/learning-hub/tutorials/dc-convert-date-time-posix-r
https://www.neonscience.org/resources/learning-hub/tutorials/dc-convert-date-time-posix-r
https://stackoverflow.com/questions/9532668/list-rows-after-specific-date
https://stackoverflow.com/questions/9532668/list-rows-after-specific-date
https://stackoverflow.com/questions/658395/find-the-number-of-columns-in-a-table#
https://stackoverflow.com/questions/658395/find-the-number-of-columns-in-a-table#

query = "SELECT COUNT(*) FROM Users WHERE CreationDate >= '2020-01-01'"
dbGetQuery(db, query)

COUNT (%)
1 100796

3. How many users joined each year? Describe this with a plot, commenting on any anomalies?
We will use the same dataframe that we used in the previous problem to count the frequency of values for
each year.

users_each_year = data.frame(table(years))
colnames (users_each_year) = c("Year", "Users Each Year")
users_each_year

Year Users Each Year
1 2010 1668
2 2011 4396
3 2012 7450
4 2013 11846
5 2014 17809
6 2015 24012
7 2016 33753
8 2017 44416
9 2018 40040
10 2019 35491
11 2020 34617
12 2021 32765
13 2022 28801
14 2023 4613
barplot(users_each_year$" o, "Year", "Number of New Users", users
0.9)

New Users that Joined Each Year

40000 —
2
]
£30000 -
2
[©]
pra
‘220000 —
0]
o)
£
>10000 —
0 —
o — AN ™ < Lo © N~ o0} (o] o — N ™
— — i — — — i i i i AN AN AN AN
o o o o o o o o o o o o o o
N N N N N N (V] N N N N N N N
Year

In our barchart, we see that the trend is increasing for the number of new users joining starting from 2010
all the way up to 2017. However, starting in 2018, there were fewer new users joining in subsequent years,
and the number of new users in 2023 dropped significantly. This could be interpreted as an outlier since
there were at least 20,00 to 30,000 new users consistently joining in previous years from 2014 to 2022, and
in 2023 the number of new users dropped to less than 10,000.

Now I will do the same code in sequel: This resource helped me get times from the database in the struc-
ture that I wanted them in. https://www.w3resource.com/sqlite/sqlite-strftime.php This resource helped
me get the frequency table. https://www.c-sharpcorner.com/blogs/sql-query-to-find-out-the-frequency-of-
each-element-in-a-columnl

#dateData = dbGetQuery(db, "SELECT strftime('JY',CreationDate) As Year FROM Users WHERE CreattionDate >=

q = "SELECT strftime('}%Y',CreationDate) as Year, COUNT(CreationDate) AS Frequency
FROM Users
GROUP BY strftime('%Y',CreationDate)"
freqs = dbGetQuery(db, q)
barplot (freqs$Frequency, "Year", "Number of New Users", fregs$Year, "New

https://www.w3resource.com/sqlite/sqlite-strftime.php
https://www.c-sharpcorner.com/blogs/sql-query-to-find-out-the-frequency-of-each-element-in-a-column1
https://www.c-sharpcorner.com/blogs/sql-query-to-find-out-the-frequency-of-each-element-in-a-column1

New Users that Joined Each Year

40000 —
2
Q
230000 —
=
()
Z
‘20000 —
o
o)
=
>10000 —
0 —
o — (V] ™ <t o © N~ (o0} ()] (@) — (qV] (90
— — — — — — — — — — (9N (9N AN AN
o o o o o o o o o o o o o o
AN AN AN (V] AN AN AN AN AN (9V] AN AN AN AN
Year

4. How many different types of posts are there in the Posts table? Get the description of
the types from the PostTypeldMap table. In other words, create a table with the description
of each post type and the number of posts of that type, and arrange it from most to least
occurrences. First, I will examine the structure of the Posts table.

posts_db = dbReadTable(db, "Posts")
posttypeidmap_db = dbReadTable(db, "PostTypeIdMap")
head (posts_db)

Id PostTypeld AcceptedAnswerId CreationDate Score ViewCount
#1001 1 15 2010-07-19T19:12:12.510 49 5364
2 2 1 59 2010-07-19T19:12:57.157 34 33588
3 3 1 5 2010-07-19T19:13:28.577 71 6622
4 4 1 135 2010-07-19T19:13:31.617 23 45393
5 5 2 0 2010-07-19T19:14:43.050 90 0
6 6 1 0 2010-07-19T19:14:44.080 486 172176
##

1

2

3

4

5

6 <p>Last year, I read a blog post from Brendan 0'Connor entitled <
OwnerUserld LastActivityDate

1 8 2020-11-05T09:44:51.710

2 24 2022-11-23T13:03:42.033
3 18 2022-11-27T23:33:13.540
4 23 2010-09-08T03:00:19.690
5 23 2010-07-19T19:21:15.063
6 5 2021-01-19T17:59:15.653

Title

1 Eliciting priors from experts

2 What is normality?

3 What are some valuable Statistical Analysis open source projects?

4 Assessing the significance of differences in distributions

5

6 The Two Cultures: statistics vs. machine learning?

Tags AnswerCount CommentCount

1 <bayesian><prior><elicitation> 6 1

2 <distributions><normality-assumption> 7 1

3 <software><open-source> 19 3

4 <distributions><statistical-significance> 5 2

5 0 3

6 <machine-learning><pac-learning> 20 10

ContentLicense LastEditorDisplayName LastEditDate LastEditorUserld
1 CC BY-SA 2.5

2 CC BY-SA 2.5 user88 2010-08-07T17:56:44.800

3 CC BY-SA 2.5 2011-02-12T05:50:03.667 183
4 CC BY-SA 2.5

5 CC BY-SA 2.5 2010-07-19T19:21:15.063 23
6 CC BY-SA 3.0 2017-04-08T17:58:18.247 11887
CommunityOwnedDate ParentId OwnerDisplayName ClosedDate FavoriteCount

1

2

3 2010-07-19T19:13:28.577

4

5 2010-07-19T19:14:43.050 3

6 2010-08-09T13:05:50.603

head (posttypeidmap_db)

id value

1 1 Question

2 2 Answer

3 3 Orphaned tag wiki

4 4 Tag wiki excerpt

5 b Tag wiki
6 6

Moderator nomination

Although there are 8 types of Post Ids in general as found in the PostTypeMapld table, there are only 7
distinct types of posts present in the Posts table.

query = "SELECT COUNT(DISTINCT Posts.PostTypeId), COUNT(DISTINCT PostTypeIdMap.id) FROM Posts, PostType
dbGetQuery(db, query)

COUNT(DISTINCT Posts.PostTypeId) COUNT(DISTINCT PostTypeIdMap.id)
#it 1 7 8

Now we will construct the overall table.

query = "SELECT Posts.PostTypeId AS Id, COUNT(Posts.PostTypeld) AS Frequency, PostTypeIdMap.value AS Ty
FROM Posts, PostTypeldMap

WHERE PostTypeldMap.id = Posts.PostTypelD

GROUP BY PostTypeld

ORDER BY Frequency DESC"

numTypes0fPosts = dbGetQuery(db, query)

head (numTypesOfPosts)

Id Frequency Type
1 1 204370 Question
2 2 197928 Answer
3 5 1444 Tag wiki
4 4 1444 Tag wiki excerpt
5 6 23 Moderator nomination
6 3 6 Orphaned tag wiki

I didn’t use JOIN so I will now use JOIN to implement the table above:

query = "SELECT Posts.PostTypeld AS Id, PostTypeIdMap.value AS Type, COUNT(Posts.PostTypeId) AS Freq
FROM Posts

LEFT JOIN PostTypeIdMap

ON Posts.PostTypelId = PostTypeIdMap.id

GROUP BY Posts.PostTypeld

ORDER BY Freq DESC"

head (dbGetQuery(db, query))

Id Type Freq
#1001 Question 204370
##H 2 2 Answer 197928
3 5 Tag wiki 1444
4 4 Tag wiki excerpt 1444
5 6 Moderator nomination 23
6 3 Orphaned tag wiki 6

In order to verify that this is correct, I am going to sum up the frequency in my table and make sure that
it adds up to the total number of posts there are.

query = "SELECT SUM(Freq) FROM (SELECT Posts.PostTypeId AS Id, PostTypeldMap.value AS Type, COUNT(Posts
FROM Posts

LEFT JOIN PostTypelIdMap

ON Posts.PostTypeld = PostTypeldMap.id

GROUP BY Posts.PostTypeld

ORDER BY Freq DESC)"

dbGetQuery(db, query)

SUM(Freq)
1 405220

To verify that this is correct, I am going to count the number of rows that are in the Posts table in R.

nrow(posts_db)

[1] 405220

5. How many posted questions are there? I am interpreting this question as asking us to find how
many of the posts are type question. In the table in the previous problem, we found the frequencies of
different types of posts, and the category for posted questions was Id 1.

#two different ways to query

queryl = "SELECT COUNT(*) FROM Posts WHERE Posts.PostTypeld = 1"

query2 = "SELECT COUNT (%)

FROM Posts, PostTypeldMap

WHERE Posts.PostTypeld = PostTypeldMap.Id AND PostTypeldMap.value = 'Question'"
dbGetQuery(db, query2)

COUNT (%)
1 204370

There are 204,370 posted questions.

I will now implement the same concept using JOIN.

query = "SELECT COUNT (%)

FROM Posts

JOIN PostTypeldMap

ON Posts.PostTypeld = PostTypeldMap.Id AND PostTypeldMap.value = 'Question'"
dbGetQuery (db, query)

COUNT (%)
1 204370

6. What are the top 50 most common tags on questions? For each of the top 50 tags on
questions, how many questions are there for each tag. Through further investigation of the Posts
and TagPosts tables, we see that only posts of type question (with PostTypeldMap.id as 1) have tags. We
can verify this in R code.

posts_db["Tags"] [posts_db["Tags"] == ""] <- NA #set empty tag wvalues to null

question_tags = posts_db[which(!is.na(posts_db$Tags)),]
print(nrow(question_tags))

[1] 204370

head(question_tags)

Id PostTypeld AcceptedAnswerId CreationDate Score ViewCount
#1001 1 15 2010-07-19T19:12:12.510 49 5364
2 2 1 59 2010-07-19T19:12:57.157 34 33588
3 3 1 5 2010-07-19T19:13:28.577 71 6622
4 4 1 135 2010-07-19T19:13:31.617 23 45393

6 6 1 0 2010-07-19T19:14:44.080 486 172176
#T 7 1 18 2010-07-19T19:15:59.303 103 42426
##

1

2

3

4

6 <p>Last year, I read a blog post from Brendan 0'Connor entitled <
7

OwnerUserId LastActivityDate

1 8 2020-11-05T09:44:51.710

2 24 2022-11-23T13:03:42.033

3 18 2022-11-27T23:33:13.540

4 23 2010-09-08T03:00:19.690

6 5 2021-01-19T17:59:15.653

7 38 2022-11-30T05:37:29.877

Title

1 Eliciting priors from experts

2 What is normality?

3 What are some valuable Statistical Analysis open source projects?

4 Assessing the significance of differences in distributions

6 The Two Cultures: statistics vs. machine learning?

7 Locating freely available data samples

H# Tags AnswerCount CommentCount

1 <bayesian><prior><elicitation> 6 1

2 <distributions><normality-assumption> 7 1

3 <software><open-source> 19 3

4 <distributions><statistical-significance> 5 2

6 <machine-learning><pac-learning> 20 10

7 <dataset><sample><population><teaching> 25 2

ContentlLicense LastEditorDisplayName LastEditDate LastEditorUserId
1 CC BY-SA 2.5

2 CC BY-SA 2.5 user88 2010-08-07T17:56:44.800

3 CC BY-SA 2.5 2011-02-12T05:50:03.667 183
4 CC BY-SA 2.5

6 CC BY-SA 3.0 2017-04-08T17:58:18.247 11887
7 CC BY-SA 2.5 2013-09-26T21:50:36.963 253
CommunityOwnedDate ParentId OwnerDisplayName ClosedDate FavoriteCount

1

2

3 2010-07-19T19:13:28.577

4

6 2010-08-09T13:05:50.603

7 2010-07-20T20:50:48.483

As found in the previous question, there are 204,370 posts of type question and there are also 204,370 posts
with tags which allows us to conclude that only posts which are questions have tags. This information is in
the TagPosts table, so we can create a frequency table of the occurrence of those tags.

query = "SELECT Posts.Tags As Tags

FROM Posts

WHERE Posts.PostTypeld = 1"
questionTagGroups = dbGetQuery(db, query)

10

tagposts_db = dbReadTable(db, "TagPosts")
head (tagposts_db)

Id Tag
1 1 bayesian
2 1 prior
3 1 elicitation
4 2 distributions
5 2 normality-assumption
6 3 software

head(questionTagGroups)

Tags
#it <bayesian><prior><elicitation>
#i# <distributions><normality-assumption>
<software><open-source>

<machine-learning><pac-learning>

1
2
3
4 <distributions><statistical-significance>
5
6 <dataset><sample><population><teaching>

Saisha Hongal and I worked together to write this frequency table. These are the top 50 most common tags
on questions. The associated frequency column gives us the number of questions there are for each tag.

query = "SELECT DISTINCT Tag, COUNT(Tag) AS Number_of_Posts
FROM TagPosts

GROUP BY Tag

ORDER BY Number_of_Posts DESC

LIMIT 50"

dbGetQuery(db, query)

Tag Number_of_Posts
#it 1 r 28495
2 regression 28146
3 machine-learning 19355
4 time-series 13745
5 probability 11894
6 hypothesis-testing 10091
7 distributions 9147
##t 8 self-study 7985
9 neural-networks 7793
10 bayesian 7628
11 logistic 7507
12 mathematical-statistics 7455
13 classification 6654
#it 14 correlation 6074
15 statistical-significance 6038
16 normal-distribution 5877
17 mixed-model 5837
18 multiple-regression 5265
19 anova 5100

11

20 python 4605

21 confidence-interval 4367
22 generalized-linear-model 4276
23 variance 4042
24 clustering 3932
25 forecasting 3726
26 t-test 3486
27 categorical-data 3468
28 cross-validation 3385
29 pca 3333
30 maximum-likelihood 3209
31 estimation 3159
32 1me4-nlme 3156
33 sampling 3104
34 predictive-models 2971
35 survival 2960
36 data-visualization 2949
37 inference 2899
38 arima 2818
39 p-value 2709
40 mean 2705
41 optimization 2688
42 least-squares 2682
43 repeated-measures 2612
44 chi-squared-test 2559
45 modeling 2501
46 references 2451
47 multivariate-analysis 2430
48 econometrics 2422
49 interaction 2421
50 linear-model 2412

7. How many tags are in most questions? In the TagPosts table, each post is categorized by an Id
number, and each tag is represented by that same Id number.

For example, the first question post has 3 tags: bayesian, prior, and elicitation so the TagPost table has 3
columns with each of these tags, and each is associated with the id 1.

posts_db[1,]1$Tags

[1] "<bayesian><prior><elicitation>"

Therefore, we will find the frequency of tags for each id.
query = "SELECT Id AS Question_Id, COUNT(Id) AS Count0fTags FROM TagPosts GROUP BY Id"

ans = dbGetQuery(db, query)
head (ans)

Question_Id CountOfTags

1 1 3
2 2 2
3 3 2

12

4 4 2
5 6 2
6 7 4

Now we will plot the distribution of the number of tags there are for all question posts with a histogram.

hist (ans$Count0fTags, "Histogram of Number of Tags For All Questions")

Histogram of Number of Tags For All Questions

o
o
O p—
o
(o]
o
S _
> O
e <
]
Q _|
(o
o o
L 8 |
o
AN
O p—
| I I I |
1 2 3 4 5
ans$CountOfTags

In this histogram, we see that most questions — around 60,000 of them — have 3 tags. Our histogram seems
to follow a bell curve. Therefore, we would assume that the average number of tags per post would fall
around 3, and we will verify this below using SQL commands.

I used this website to help me find how to get the average of a count column. https://www.sqlteam.com/
forums/topic.asp? TOPIC__ID=33152

#query = "SELECT DISTINCT Id, COUNT(Id) AS Num_Tags FROM TagPosts GROUP BY Id"
query = "SELECT AVG(Count0fTags) FROM

(

SELECT COUNT(Id) AS Count0fTags FROM TagPosts GROUP BY Id

)n

dbGetQuery(db, query)

AVG(CountOfTags)
1 3.08534

Therefore, this means that there are 3 tags in most questions since we will round down the average to the
nearest whole number.

13

https://www.sqlteam.com/forums/topic.asp?TOPIC_ID=33152
https://www.sqlteam.com/forums/topic.asp?TOPIC_ID=33152

query = "SELECT COUNT(*) AS Num_Answers

FROM Posts, PostTypeldMap

WHERE Posts.PostTypeld = PostTypeIdMap.Id AND PostTypeIdMap.value = 'Answer'"
dbGetQuery(db, query)

8. How many answers are there?

Num_Answers
#it 1 197928

There are 197,928 answers posted. Similarly to question 5 which was asking us how many posted questions
there are, I am going to look for how many posts of category answers there are and count those.

I will now do this same idea with JOIN.

query = "SELECT COUNT(*) AS Num_Ans

FROM Posts

JOIN PostTypeldMap

ON Posts.PostTypeld = PostTypeldMap.Id AND PostTypeldMap.value = 'Answer'"
dbGetQuery(db, query)

Num_Ans
1 197928

9. What’s the most recent question (by date-time) in the Posts table? Find it on the
stats.exchange.com Web site and provide the URL. How would we map a question in the
Posts table to the corresponding SO URL? To find the most recent question, we are going to filter
the Posts table by the PostTypeld of 1 since that correlates to questions, and then we are going to look for
the most recent Creation Date.

query = "SELECT Posts.Id, DATETIME(Posts.CreationDate) as Date, Posts.CreationDate, Posts.Body
FROM Posts

WHERE Posts.PostTypeld = 1

ORDER BY Date DESC"

head (dbGetQuery (db, query))

#it Id Date CreationDate
1 608405 2023-03-05 05:10:18 2023-03-05T05:10:18.393
2 608403 2023-03-05 04:33:18 2023-03-05T04:33:18.820
3 608401 2023-03-05 03:21:49 2023-03-05T03:21:49.153
4 608400 2023-03-05 02:51:55 2023-03-05T02:51:55.797
5 608398 2023-03-05 01:37:48 2023-03-05T01:37:48.233
6 608397 2023-03-05 01:23:04 2023-03-05T01:23:04.347
##

1

2

3

#it 4

5 <h4>Motivating Background Info</h4>\\\\n<p>I was recently in a grad class and someone was presenti:
6

14

We use the DATETIME function in order to sort the strings by date time in order of most recently added.
This will allow us to see which question is most recent by ordering in descending order. The associated Post
Id with the most recent question is 608405.

query = "SELECT Posts.Id, DATETIME(Posts.CreationDate) as Date, Posts.Body, Posts.OwnerUserId
FROM Posts

WHERE Posts.PostTypeld = 1

ORDER BY Date DESC

LIMIT 1"

dbGetQuery(db, query)

Id Date
1 608405 2023-03-05 05:10:18
##

1 <p>Are there any methods that combine VI and MCMC? If it exists, why isn’t it used prominently ove:
OwnerUserId
1 382402

I looked up the following body of the question online: Are there any methods that combine VI and MCMC?
If it exists, why isn’t it used prominently over techniques such as NUTS or other VlIs.

I found this stack overflow link: https://stats.stackexchange.com/questions/608458 /are-there-any-methods-
that-combine-mcme-and-vi

We can verify whether or not this is the correct post is by checking the owner user id. We can’t rely on the
view count since the website was most likely viewed more times, especially considering that this assignment
was posted and many other students could have recently been looking at it. By looking at the actual SO
website, I clicked on the user who posted that question, and their name is JJbox. Their associated user Id
is 382402 which helps us confirm that this is the right question.

query = "SELECT Posts.Id, Posts.Tags, Posts.OwnerUserId
FROM Posts

WHERE Posts.Id IN ('608405')"

dbGetQuery(db, query)

Id
1 608405
Tags

1 <markov-chain-montecarlo><variational-inference><hamiltonian-monte-carlo>
OwnerUserId
1 382402

query = "SELECT Users.Id, Users.DisplayName
FROM Users

WHERE Users.Id = '382402'"

dbGetQuery(db, query)

Id DisplayName
1 382402 JJbox

Now, we will answer the second part of the question: how would we map a question in the Posts table to
the corresponding SO URL?

15

https://stats.stackexchange.com/questions/608458/are-there-any-methods-that-combine-mcmc-and-vi
https://stats.stackexchange.com/questions/608458/are-there-any-methods-that-combine-mcmc-and-vi

10. For the 10 users who posted the most questions: 1) How many questions did they post?,
2) What are the users’ names?, 3) When did they join SO?, 4) What is their Reputation?, 5)
What country do they have in their profile? NOT FINISHED YET First we will find the users who
posted the most questions. The Users table provides information about each user, including the number
of upvotes and downvotes that they have and their reputation, as just 2 examples, but it doesn’t include
anything about how many questions they have posted.

I will check the posts table to see if it has any information about which user is posting the question, and
then create a frequency table from that information.

colnames (posts_db)

[1] "Iq" "PostTypeId" "AcceptedAnswerId"

[4] "CreationDate" "Score" "ViewCount"

[7] "Body" "OwnerUserId" "LastActivityDate"

[10] "Title" "Tags" "AnswerCount"

[13] "CommentCount" "ContentLicense" "LastEditorDisplayName"
[16] "LastEditDate" "LastEditorUserId" "CommunityOwnedDate"

[19] "ParentIq" "OwnerDisplayName" "ClosedDate"

[22] "FavoriteCount"

The Posts table has a column called the OwnerUserld, and this value correlates to the User themselves who
initially posted the question. I will query in the Posts table for all posts which are questions, and then group
these posts by the OwnerUserld to see how many questions these users posted.

query = "SELECT Posts.OwnerUserId, COUNT(Posts.OwnerUserId) AS Freq
FROM Posts

WHERE Posts.PostTypeld = 1

GROUP BY Posts.OwnerUserId

ORDER BY Freq DESC"

ans = dbGetQuery(db, query)

Warning: Column “OwnerUserId : mixed type, first seen values of type string,
coercing other values of type integer

query = "SELECT DISTINCT Tag, COUNT(Tag) AS Number_of_Posts

FROM TagPosts

WHERE Tag = 'regression' OR Tag = 'anova' OR Tag = 'data-mining' OR Tag = 'machine-learning' OR Tag = "
GROUP BY Tag

ORDER BY Number_ of Posts DESC"

dbGetQuery(db, query)

12. For each of the following terms, how many questions contain that term: Regression,
ANOVA, Data Mining, Machine Learning, Deep Learning, Neural Network.

Tag Number_of_Posts
1 regression 28146
2 machine-learning 19355
3 neural-networks 7793
4 anova 5100
5 deep-learning 1878
6 data-mining 1180

16

The way I am solving it is by looking for the exact keywords as specified in the prompt. I manually looked
through the keywords after loading in the TagPosts dataframe to find which specific word represented the
terms in the prompt. There are 28,146 questions containing the term Regression, 19,355 questions containing
the term Machine Learning, 7,793 questions containing the term Neural Networks, 5,100 questions containing
the term ANOVA, 1,878 questions containing the term Deep Learning, and 1,180 questions containing the
term Data Mining.

For further investigation, I am going to use R to analyze the tags. I want to look deeper since terms like
regression are umbrella terms and there are many different types of regression so there could be many more
posts that fall under that category.

tagkeywds = unique(tagposts_db$Tag)
length(tagkeywds)

[1] 1587

There are 1587 unique tag keywords. Many of them may contain parts of the keywords that we are search-
ing for. For example, there are many different types of regression so just using the keyword regression
may not be a thorough enough filter. This website helped me filter out the table to contain rows that
had a specific part of a string: https://www.tutorialspoint.com/select-where-row-value-contains-string-in-
mysql#:~text=To%20select %20the%20row %20value,a%20table %20is%20as%20follows.

print ("How many terms containing regression are there?")

[1] "How many terms containing regression are there?"

length(grep('"regression", tagkeywds, value = TRUE))

[1] 25

#grep ("anova", tagkeywds, value = TRUE)

query = "SELECT DISTINCT Tag, COUNT(Tag) AS Number_of_Posts
FROM TagPosts

WHERE Tag like 'Jregressionj'

GROUP BY Tag

ORDER BY Number_of Posts DESC"

num_regression = dbGetQuery(db, query)
nrow(num_regression)

[1] 25

We have verified that our query correctly gives us the count of posts associated with each of the terms that
contain regression. We can now do the same with all of the other keyterms.

query = "SELECT DISTINCT Tag, COUNT(Tag) AS Number_of_Posts

FROM TagPosts

WHERE Tag like 'Jregression),' OR Tag like 'l,anoval,' OR Tag like 'J,data-mining},' OR Tag like 'Ymachine-1
GROUP BY Tag

ORDER BY Number_of_Posts DESC"

dbGetQuery(db, query)

17

https://www.tutorialspoint.com/select-where-row-value-contains-string-in-mysql#
https://www.tutorialspoint.com/select-where-row-value-contains-string-in-mysql#

Tag Number_of_Posts

1 regression 28146
2 machine-learning 19355
3 neural-networks 7793
4 multiple-regression 5265
5 anova 5100
6 regression-coefficients 1968
T deep-learning 1878
8 data-mining 1180
9 nonlinear-regression 1113
10 poisson-regression 904
11 vector-autoregression 785
12 ridge-regression 743
13 manova 434
14 quantile-regression 371
15 weighted-regression 353
16 multivariate-regression 337
17 stepwise-regression 318
18 regression-strategies 292
19 meta-regression 203
20 beta-regression 198
21 dynamic-regression 144
22 tobit-regression 135
23 constrained-regression 133
24 regression-discontinuity 73
25 nonparametric-regression 66
26 segmented-regression 55
27 seemingly-unrelated-regressions 48
28 regression-to-the-mean 23
29 deming-regression 22
30 reduced-rank-regression 17
31 dirichlet-regression 14
32 geometric-deep-learning 2

13. Using the Posts and PostLinks tables, how many questions gave rise to a “related” or
“duplicate” question? And how many responses did these questions get? How experienced
were the users posting these questions. We will look at the structure of the Posts, PostLinks, and
LinkTypeMap tables to get an idea of what the data in the table looks like:

postlinks_db = dbReadTable(db, 'PostLinks')
linktypemap_db = dbReadTable(db, 'LinkTypeMap')
head (postlinks_db)

Id CreationDate PostId RelatedPostId LinkTypeId
1 108 2010-07-21T14:47:33.983 395 173 1
2 145 2010-07-23T16:30:41.780 548 539 1
3 151 2010-07-24T09:11:01.413 536 590 1
4 217 2010-07-26T20:12:15.600 375 30 1
5 263 2010-07-27T16:00:22.133 769 31 1
6 264 2010-07-27T16:00:22.133 769 6 1

18

head (posts_db)

Id PostTypeld AcceptedAnswerId CreationDate Score ViewCount
1 1 1 15 2010-07-19T19:12:12.510 49 5364
##H 2 2 1 59 2010-07-19T19:12:57.157 34 33588
3 3 1 5 2010-07-19T19:13:28.577 71 6622
4 4 1 135 2010-07-19T19:13:31.617 23 45393
5 b 2 0 2010-07-19T19:14:43.050 920 0
6 6 1 0 2010-07-19T19:14:44.080 486 172176
##

1

2

3

4

b

6 <p>Last year, I read a blog post from Brendan 0'Connor entitled <

OwnerUserId LastActivityDate

1 8 2020-11-05T09:44:51.710
2 24 2022-11-23T13:03:42.033
3 18 2022-11-27T23:33:13.540
#it 4 23 2010-09-08T03:00:19.690
5 23 2010-07-19T19:21:15.063
6 5 2021-01-19T17:59:15.653

Title

1 Eliciting priors from experts

2 What is normality?

3 What are some valuable Statistical Analysis open source projects?

4 Assessing the significance of differences in distributions

5

6 The Two Cultures: statistics vs. machine learning?

Tags AnswerCount CommentCount

1 <bayesian><prior><elicitation> 6 1

2 <distributions><normality-assumption> 7 1

3 <software><open-source> 19 3

4 <distributions><statistical-significance> 5 2

5 <NA> 0 3

6 <machine-learning><pac-learning> 20 10

ContentLicense LastEditorDisplayName LastEditDate LastEditorUserId
1 CC BY-SA 2.5

2 CC BY-SA 2.5 user88 2010-08-07T17:56:44.800

3 CC BY-SA 2.5 2011-02-12T05:50:03.667 183
4 CC BY-SA 2.5

5 CC BY-SA 2.5 2010-07-19T19:21:15.063 23
6 CC BY-SA 3.0 2017-04-08T17:58:18.247 11887
CommunityOwnedDate ParentId OwnerDisplayName ClosedDate FavoriteCount

1

2

3 2010-07-19T19:13:28.577

4

5 2010-07-19T19:14:43.050 3

6 2010-08-09T13:05:50.603

19

linktypemap_db

id value
1 1 Linked (PostId contains a link to RelatedPostId)
2 3 Duplicate (PostId is a duplicate of RelatedPostId)

There are only two types of links with LinkTypelds of 1 and 3. Overall Steps: * We are asked to find out
how many questions gave rise to a duplicate or related question so that means that we first will need to
filter the posts by those which have a PostIdType of 1. * We will look at the Postlds in the Posts table
which have a PostTypeld of 1, and then we will look at the corresponding Postld in the PostLinks table to
see what LinkTypeld it has.

query = "SELECT Posts.Id AS PostId, Posts.PostTypeld, PostLinks.LinkTypeld, LinkTypeMap.value
FROM Posts

LEFT JOIN PostLinks

ON Posts.Id = PostLinks.PostId

LEFT JOIN LinkTypeMap

ON PostLinks.LinkTypeId = LinkTypeMap.id

WHERE Posts.PostTypeld = 1"

ans = dbGetQuery(db, query)

head(ans)

PostId PostTypeld LinkTypeld value
1 1 1 NA <NA>
2 2 1 NA <NA>
3 3 1 NA <NA>
4 4 1 1 Linked (PostId contains a link to RelatedPostId)
5 6 1 1 Linked (PostId contains a link to RelatedPostId)
6 6 1 1 Linked (PostId contains a link to RelatedPostId)

This table gives us all the posts in the Posts table which are questions, and maps it to its corresponding
PostTypeld (which will be 1 since we filtered the table in such a way that we would only get questions), and
then we also mapped it to the LinkTypeld (if it exists for that question), and then to the value which the
LinkTypeld correlates to.

Now we will want to constrain this table even more to only show the posts which have LinkTypelds. This
means that we will want to use an INNER JOIN since we need the post to have both a postld and a
LinkTypeld since then we know that the question gave rise to a related or duplicated question.

query = "SELECT Posts.Id AS PostId, PostLinks.RelatedPostId, PostLinks.LinkTypelId, LinkTypeMap.value
FROM Posts

INNER JOIN PostLinks

ON Posts.Id = PostLinks.PostId

LEFT JOIN LinkTypeMap

ON PostLinks.LinkTypeId = LinkTypeMap.id

WHERE Posts.PostTypeld = 1"

ans = dbGetQuery(db, query)

head (ans)

Postld RelatedPostId LinkTypeld
1 395 173 1
2 548 539 1

20

3 375 30 1
4 769 31 1
5 769 6 1
6 790 298 1
value
1 Linked (PostId contains a link to RelatedPostId)
2 Linked (PostId contains a link to RelatedPostId)
3 Linked (PostId contains a link to RelatedPostId)
4 Linked (PostId contains a link to RelatedPostId)
5 Linked (PostId contains a link to RelatedPostId)
6 Linked (PostId contains a link to RelatedPostId)

query = "SELECT COUNT (%)

FROM Posts

INNER JOIN PostLinks

ON Posts.Id = PostLinks.PostId

LEFT JOIN LinkTypeMap

ON PostLinks.LinkTypeld = LinkTypeMap.id
WHERE Posts.PostTypeld = 1"
dbGetQuery(db, query)

COUNT (%)
1 80155

There are 80,155 questions which give rise to a related or duplicate question. We know this is true because
we filtered the Posts table to only contain the posts which are questions, and those which correlate to a
LinkTypeld. Now I will answer the subquestions.

The first subquestion is asking how many responses these questions got. I am going to interpret responses
as the number of comments and the number of answers a question gets.

query = "SELECT Posts.Id AS PostId, PostLinks.RelatedPostId, PostLinks.LinkTypelId, LinkTypeMap.value, P
FROM Posts

INNER JOIN PostLinks

ON Posts.Id = PostLinks.PostId

LEFT JOIN LinkTypeMap

ON PostLinks.LinkTypeId = LinkTypeMap.id

WHERE Posts.PostTypeld = 1"

ans = dbGetQuery(db, query)

head (ans)

Postld RelatedPostId LinkTypeld

1 395 173 1
2 548 539 1
3 375 30 1
4 769 31 1
5 769 6 1
6 790 298 1
value AnswerCount CommentCount
1 Linked (PostId contains a link to RelatedPostId) 2 1
2 Linked (PostId contains a link to RelatedPostId) 1 0
3 Linked (PostId contains a link to RelatedPostId) 0 1
4 Linked (PostId contains a link to RelatedPostId) 2 4

21

N
KN

5 Linked (PostId contains a link to RelatedPostId)
6 Linked (PostId contains a link to RelatedPostId)
Total_Num_Responses

N
w

1 3
2 1
3 1
#it 4 6
5 6
6 5

The table above answers the question: how many responses did these questions get?. We have all the
questions which gave rise to related or duplicate questions, the Id of the related or duplicate question, and
the number of total responses this question got which is in the Total Num_ Responses column.

Now to answer the second part of the question: How experienced were the users posting these questions,
we are going to look in the Users table to see the reputation of the User who posted these questions. THe
higher the reputation, the higher the experience. I got this idea of using reputation as a metric from Piazza
question 232 https://piazza.com/class/lfxbfh6er6b2jo/post/232.

query = "SELECT Posts.Id AS PostId, Posts.OwnerUserId, Users.Reputation AS User_Reputation, PostLinks.R
FROM Posts

INNER JOIN PostLinks

ON Posts.Id = PostLinks.PostId

LEFT JOIN LinkTypeMap

ON PostLinks.LinkTypelId = LinkTypeMap.id
LEFT JOIN Users

ON Posts.OwnerUserId = Users.Id

WHERE Posts.PostTypeld = 1

ORDER BY User_Reputation DESC"

ans = dbGetQuery(db, query)

Warning: Column “OwnerUserId : mixed type, first seen values of type integer,
coercing other values of type string

head(ans)

PostId OwnerUserId User_Reputation RelatedPostId

1 41208 919 304878 23779

2 1963 919 304878 99376

3 204843 919 304878 200500

4 415435 919 304878 484495

5 204843 919 304878 243126

6 576735 919 304878 265939

value AnswerCount CommentCount
1 Linked (PostId contains a link to RelatedPostId) 34 26
2 Linked (PostId contains a link to RelatedPostId) 4 7
3 Linked (PostId contains a link to RelatedPostId) 3 10
4 Linked (PostId contains a link to RelatedPostId) 1 0
5 Linked (PostId contains a link to RelatedPostId) 3 10
6 Linked (PostId contains a link to RelatedPostId) 1 0
Total_Num_Responses

1 60

2 11

22

https://piazza.com/class/lfxbfh6er6b2jo/post/232

3 13

##t 4 1
5 13
6 1

The table above answers all of the questions. The total number of rows in our data frame tells us how many
questions gave rise to a duplicate or related question. Then, we added different columns to our table to tell
us how many responses each question was getting by summing up the number of comments and responses
on each of these questions that were linked in some way to another question. Lastly, we added another
column to show the correlating User who posted the original question, and their reputation. I ordered the
table in descending order so Postlds of questions associated with Users who wrote them with the highest
experience/reputation are shown. For example, the user with Userld 919 has the highest reputation out of
all the questions which are linked to other posts in some way.

14. What is the date range for the questions and answers in this database? The way I am
interpreting this problem is to find the date range for posts which are questions only. I am then going to
find the date range for posts which are answers only.The date range will be the earliest/minimum date time,
and the latest/maximum date time in the column of date time strings. I will also try to find the duration
between these date values.

Below, I will be looking into all of the posts which are questions.

query = "SELECT Posts.Id AS PostId, Posts.Body FROM Posts Where PostTypeld = 1"
head (dbGetQuery(db, query))

Postld
1 1
2 2
3 3
4 4
5 6
6 7
#i#t

1

2

3

4

5 <p>Last year, I read a blog post from Brendan 0'Connor entitled <
6

query = "SELECT MIN(DATETIME(Posts.CreationDate)) AS Min_Question_Date, MAX(DATETIME(Posts.CreationDate
FROM Posts

WHERE PostTypeId = 1"

head (dbGetQuery (db, query))

Min_Question_Date Max_Question_Date Duration_Years Duration_Days
1 2009-02-02 14:21:12 2023-03-05 05:10:18 14 5143.617

Below are the posts which are answers, and this is because the PostTypeld is equal to 2.

23

query = "SELECT Posts.Id AS PostId, Posts.Body FROM Posts Where PostTypeld = 2"
head (dbGetQuery(db, query))

PostId

1 5

2 9

3 12

4 13

5 14

6 15

##

1 <p>The R-project</p>\\\\n\\\\n<p>http://www.r-project.org/
2

3

4 <p>Machine Learning seems to have its basis in the pra
5

6

query = "SELECT MIN(DATETIME(Posts.CreationDate)) AS Min_Question_Date, MAX(DATETIME(Posts.CreationDate
FROM Posts
WHERE PostTypeld = 2"

head (dbGetQuery(db, query))

Min_Question_Date Max_Question_Date Duration_Years Duration_Days
1 2009-02-02 14:24:31 2023-03-05 04:48:34 14 5143.6

query = "SELECT Id, Body, CommentCount, AnswerCount
FROM Posts

WHERE Posts.PostTypeld = 1

ORDER BY CommentCount DESC"

question_post_comments = dbGetQuery(db, query)
head(question_post_comments)

15. What question has the most comments associated with it? How many answers are there
for this question?

#i 1d
1 328630
2 357466
3 298917
4 195034
5 286415
6 349922
##
1
=FALSE), \\\¥#t 2 <h2>TL;DR</h2zWhXdntpofiecttathe=TAPENIN\RXhnr />\\\\nXhiXHotivatiomsdbl>\axintp2I&#RshbpinggTntontc
3

tatistics-in-d##adscience/">http://magazine.amstat.org/blog/2015/10/01/asa-statement-on-the-role-of-statistics-in-dat

24

5

e {-(b+c)t}}{1 + \\frac{cHble {-(b+c)t}}\\space .$$ This equation has a sigmoidal shape and without mu
6

CommentCount AnswerCount

1 54 6
2 53 2
3 46 16
4 44 13
5 39 0
6 39 2

In order to solve this problem, I filtered the dataframe by posts with a PostTypeld of 1 since those posts
are questions. I then order the table by comment count since I want to see which questions have the most
comments. Out of the 204,370 questions that we have found, the most comments associated with a question
is 54, and there are 6 answers to this question. This question specifically is below and the associated post
1d is 328630.

query = "SELECT Body

FROM Posts

WHERE Posts.PostTypeld = 1 AND Posts.Id = 328630"
print (dbGetQuery(db, query)$Body)

[1] "<p>Consider a good old regression problem with p predictors and sample size n. The usual wi

To check if this is true, we are going to look into the Comments table.

query = "SELECT DISTINCT PostId, COUNT(PostId) As Num_Comments
FROM Comments

GROUP BY PostId

ORDER BY Num_Comments DESC"

head (dbGetQuery(db, query))

PostId Num_Comments

1 386853 66
2 551190 62
3 451817 54
4 328630 54
5 357466 53
6 471672 48

I will now manually check the first few PostIds before the Postld 328630 which I found to make sure that they
are not questions. This link helped me with the In keyword: https://www.w3schools.com/sql/sql_in.asp

query = "SELECT Posts.Id, Posts.PostTypeld

FROM Posts

WHERE Posts.Id IN ('386853', '551190', '451817', '328630')"
head (dbGetQuery(db, query))

#it Id PostTypeld
1 328630 1
2 386853 2
3 451817 2
4 551190 2

25

https://www.w3schools.com/sql/sql_in.asp

We have just verified that we found the correct post/question since the other posts that had more comments
are not questions, but are answers.

16. How many comments are there across all posts? How many posts have a comment? What
is the distribution of comments per question? In order to solve this problem, we will first examine
the structure of the Comments table.

comments_db = dbReadTable(db, 'Comments')

Warning: Column “UserId™: mixed type, first seen values of type integer,
coercing other values of type string

head (comments_db)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

DO WN DOV WN -

OO WN -

Id PostId Score

1

~NOo W N

3 7
5 0
9 1
5 11
14 10
18 1

Could be a poster child for argumentative and subjective. At the least,
Yes, R is nice
Again- why? How would I convince my boss to

It's mature, well supported, and a standard within certain scientific communities (popular in our .

why ask the question here? All are community-wiki, why not jus
also the US census data http://www.cens
CreationDate UserId ContentLicense UserDisplayName

2010-07-19T19:15:52.517 13 CC BY-SA 2.5
2010-07-19T19:16:14.980 13 CC BY-SA 2.5
2010-07-19T19:18:54.617 13 CC BY-SA 2.5
2010-07-19T19:19:56.657 37 CC BY-SA 2.5
2010-07-19T19:22:27.947 23 CC BY-SA 2.5
2010-07-19T19:25:47.877 36 CC BY-SA 2.5

print (colnames (comments_db))

[1]
[5]

"Id" "PostId" "Score" "Text"
"CreationDate" "UserId" "ContentLicense" "UserDisplayName"

The Postld column in the Comments table represents the post for which the comment is associated with. If
there are multiple comments associated with a post, the PostId will be the same for all of those comments.
Therefore, to find the total number of columns, we can count the number of rows there are overall in the
Comments table. This is because every comment will be associated with a post so we will count the number
of these comments.

query = "SELECT COUNT(*) FROM Comments"
dbGetQuery(db, query)

##
##

1

COUNT (*)

768069

26

There are 768,069 total comments across all posts. We can check if this is right in another way as well by
summing over the CommentCount attribute in the Posts table.

query = "SELECT SUM(CommentCount) FROM Posts"
dbGetQuery (db, query)

SUM(CommentCount)
1 768069

The second method gives us the same number of total comments, so we have verified that we found the right
value for the total number of comments across all posts.

Now we will answer the sub questions — the first being how many posts have a comment?

"

query =
SELECT Posts.CommentCount, COUNT(Posts.CommentCount) AS Frequency
FROM Posts

GROUP BY CommentCount

comment_freq = dbGetQuery(db, query)

head (comment_freq)

CommentCount Frequency

#it 1 0 175361
2 1 60722
3 2 56286
4 3 34971
5 4 24968
6 5 16241

The frequency table above tells us how many posts have 0 comments, 1 comments, 2 comments, etc. The
first row in our frequency table tells us that there are 175,361 posts with 0 comments.

To confirm that our comment count frequency table for all posts is correct, we need to check whether or not
the sum of the Frequency table is equal to the total number of posts there are. If we did it correctly, the
sum of the Frequency column should be equal to 405,220 which is the total number of posts there are.

print("Total number of posts there are:")

[1] "Total number of posts there are:"

query = "SELECT COUNT(*) FROM Posts"
dbGetQuery(db, query)

COUNT (%)
1 405220

query = "SELECT SUM(Frequency) FROM

(

SELECT Posts.CommentCount, COUNT(Posts.CommentCount) AS Frequency
FROM Posts

GROUP BY CommentCount

)ll

dbGetQuery(db, query)

27

SUM(Frequency)
1 405220

We have now verified that our comment count frequency table for all posts is correct since the sum of the
number of posts there are for each comment count sums up to the total number of posts which is 405,220.

Now we will limit the resulting output of our sequel command to just sum of frequencies for posts which
don’t have a comment count of 0. Posts which have a comment count of 0 don’t have any comments so we
don’t want this in our total sum.

query = "SELECT SUM(Frequency) FROM

(

SELECT Posts.CommentCount, COUNT(Posts.CommentCount) AS Frequency
FROM Posts

WHERE Posts.CommentCount !'= 'O’

GROUP BY CommentCount

)Il

dbGetQuery(db, query)

SUM(Frequency)
1 229859

The first sub-question we answered above is: how many posts have a comment? I got that 229,859 posts
have a comment. The way that I interpreted this question is to find the number of posts that don’t have 0
comments. This means that I will be finding the number of posts that have 1, 2, 3, ... etc. comments.

Now we will answer the next question asking us what the distribution of comments is per question. In order
to do this, I will first find all of the posts which are questions by limiting the posts to those that have a post
type Id of 1, and then count the frequency of each of the comment counts for the questions.

query = "

SELECT Posts.CommentCount, COUNT(Posts.CommentCount) AS Frequency
FROM Posts

WHERE Posts.PostTypeld = 1

GROUP BY CommentCount

freq = dbGetQuery(db, query)

head(freq)

CommentCount Frequency

1 0 76090
2 1 30707
3 2 30417
4 3 20645
5 4 14897
6 5 9832

barplot (freq$Frequency, xlab = "Number of Comments", ylab = "Number of Posts with that Number of Commen

28

Distribution of the Number of Comments for Posts

0000 —
0000 —
0000 —
000 —
530000 | |

0000 —
0000 —

Hﬂﬂﬂnmﬁ_

O N < © 00 ON < © 0 O NI © 0 O
o A " N N AN NN M

o
I

<
[To]

Number oﬁfos@ wm tha_,; Nugqbeg.,of C\qmments
o

N < I O ©
MmO MmO O M <<

Number of Comments

In order to check if this is the correct frequency table, we need to make sure that the sum of the frequency
column is equal to the total number of posts which are questions. There are 204,370 total questions.

print("The total number of questions is equal to: ")

[1] "The total number of questions is equal to: "

query = "SELECT COUNT(Posts.PostTypeId) FROM Posts WHERE PostTypeld = 1"
dbGetQuery (db, query)

COUNT(Posts.PostTypeId)
1 204370

print("The sum of the frequency column in our frequency table from above is: ")

[1] "The sum of the frequency column in our frequency table from above is: "

query = "SELECT SUM(Frequency) FROM

(

SELECT Posts.CommentCount, COUNT(Posts.CommentCount) AS Frequency
FROM Posts

WHERE Posts.PostTypeld = 1

GROUP BY CommentCount

)ll

dbGetQuery (db, query)

29

SUM(Frequency)
1 204370

18. Do the people who vote tend to have badges? NOT FINISHED YET For this problem, we will
examine the votes, votetypemap, and badges tables. The votes table has the following columns:

votes_db = dbReadTable(db, "Votes")

Warning: Column “UserId™: mixed type, first seen values of type string, coercing
other values of type integer

Warning: Column “BountyAmount : mixed type, first seen values of type string,
coercing other values of type integer

colnames (votes_db)

[1] "Id" "PostId" "VoteTypeId" "CreationDate" "UserId"
[6] "BountyAmount"

We will look at the Userld attribute in the table to find out which user voted on the post which is specified
with the Postld column. Looking at the Userld column, a lot of the values are empty which makes sense since
there are lots of different voting types which wouldn’t need to record a user. Looking at the votetypemap,
we can see what types of votes will record the Userld.

votetypemap_db = dbReadTable(db, "VoteTypeMap")
head (votetypemap_db)

id
1 1
2 2
3 3
4 4
5 b
6 6
value
1 AcceptedByOriginator
2 UpMod (AKA upvote)
3 DownMod (AKA downvote)
4 Offensive
5 Favorite (UserId will also be populated)
6 Close (effective 2013-06-25: Close votes are only stored in table: PostHistory)

Votes with an associated vote type ID of 5 and 8 will record the userld, and this is said in the value column
in parentheses of the VoteTypeMap table. We can also verify this by looking for the entries in the Userld
column of the Votes table which are not empty since the majority of Userld column values are empty. I am
using R to visualize and analyze the data and then I will later query the data with sequel commands after I
understand more about the structure of the data.

non_empty_userId = votes_db[which(votes_db$UserId != ""),]
head (non_empty_userId)

30

Id PostId VoteTypeld CreationDate UserId BountyAmount

1405 1733 93 8 2010-07-24T00:00:00.000 61 50
1805 2238 575 8 2010-07-27T00:00:00.000 196 50
3049 3819 608 8 2010-08-03T00:00:00.000 196 50
5055 6209 1841 8 2010-08-20T00:00:00.000 990 50
6426 7849 2272 8 2010-09-03T00:00:00.000 71 50
6437 7862 2245 8 2010-09-03T00:00:00.000 5 50

print("Vote Type IDs associated with User Idss")

[1] "Vote Type IDs associated with User Idss"

print(unique (non_empty_userId$VoteTypeIld))

[1] 8 5

Our analysis has proven our hypothesis that VoteTypelds of 5 and 8, correlating to Favorites and Bounty
Starts respectively, are recorded. Now we can move forward with the data analyzing.

query = "SELECT Votes.PostId, Votes.UserId, Votes.VoteTypeld
FROM Votes

WHERE Votes.UserId != ''"

numVotingUsers = dbGetQuery(db, query)

print ("The number of users who are voting is: ")

[1] "The number of users who are voting is: "

nrow(numVotingUsers)

[1] 6552

head (numVotingUsers)

PostId UserId VoteTypeld

1 93 61 8
2 575 196 8
3 608 196 8
4 1841 990 8
5 2272 71 8
6 2245 5 8

This means that there are 6,552 votes affiliated with a Userld, so those users have voted. Now we will link
these Userlds that we have found to the data in the Badges table.

badges_db = dbReadTable(db, 'Badges')
head (badges_db)

31

Id UserId Name Date Class TagBased

1 1 5 Teacher 2010-07-19T19:39:07.047 3 False

2 2 6 Teacher 2010-07-19T19:39:07.220 3 False

3 3 8 Teacher 2010-07-19T19:39:07.330 3 False

4 4 23 Teacher 2010-07-19T19:39:07.437 3 False

5 b 36 Teacher 2010-07-19T19:39:07.593 3 False

6 6 37 Teacher 2010-07-19T19:39:07.687 3 False

print (colnames(badges_db))

[1] "Iq" "UserId" "Name" "Date" "Class" "TagBased"

The Badges table has a Userld column which tells us which badge a user has. We need to keep in mind
that the Votes Userld column can have repeats since that just means that the same user has voted multiple
times.

query = "SELECT DISTINCT Votes.UserID, Votes.VoteTypeld, Badges.Class, bcm.value
FROM Votes

LEFT JOIN Badges

ON Votes.UserID = Badges.UserID

JOIN BadgeClassMap AS bcm

ON bcm.id = Badges.Class"

ans = dbGetQuery(db, query)

head (ans)

UserId VoteTypeld Class value

1 61 8 1 Gold
2 61 8 2 Silver
3 61 8 3 Bronze
4 196 8 1 Gold
5 196 8 2 Silver
6 196 8 3 Bronze

Required Questions

21. Compute the table that contains: the question, the name of the user who posted it, when
that user joined, their location, the date the question was first posted, the accepted answer,
when the accepted answer was posted, the name of the user who provided the accepted answer.
We will need the following information to create this table: * The question is the body from the Posts table
where these are for the Posts of PostTypeld = 1 (just in case, we can include the question title which
may or may not be blank) and this is Posts.Title * Posts.OwnerUserld correlates to the Users.Id which is
connected to their display name which is in Users.DisplayName * Users.CreationDate is when they first joined
* Users.Location is where their location is * Posts.CreationDate is the date the question was first posted
* Posts.AcceptedAnswerld is the id of the accepted answer and we will need to connect this to the actual
answer itself. This will be in Posts.Id and it is the body so Posts.Body such that Posts.Accepted Answerld
= Posts.Id. * When the actual answer was posted is Posts.CreationDate for the post that correlates to that
Answer Id. * The name of the user who provided the accepted answer will be the Posts.OwnerUserld for
that answer

I am going to do this problem step by step in small chunks and then build up on it. In my first table chunk,
there should be 204,370 rows since that is how many questions there are.

32

query = "SELECT Posts.Id AS PostId, Posts.Body AS Question, Posts.OwnerUserId, Users.DisplayName As Que
FROM Posts

LEFT JOIN Users

ON Users.Id = Posts.OwnerUserId

WHERE Posts.PostTypeld = 1"

head (dbGetQuery(db, query))

Warning: Column "OwnerUserId : mixed type, first seen values of type integer,
coercing other values of type string

Warning: Column “AcceptedAnswerId ™ : mixed type, first seen values of type
integer, coercing other values of type string

PostId

1 1

2 2

#t 3 3

#it 4 4

5 6

6 7

#i

#it 1

#it 2

3

4

5 <p>Last year, I read a blog post from Brendan 0'Connor entitled <
#t 6

OwnerUserId Question_User_Name When_Question_User_Joined

1 8 csgillespie 2010-07-19T19:04:52.280

2 24 A Lion 2010-07-19T19:09:32.157

3 18 grokus 2010-07-19T19:08:29.070

#t 4 23 Jay Stevens 2010-07-19T19:09:16.917

##t 5 5 Shane 2010-07-19T19:03:57.227

#t 6 38 EAMann 2010-07-19T19:11:57.393

Question_User_Location When_Question_Posted AcceptedAnswerId
1 Newcastle, United Kingdom 2010-07-19T19:12:12.510 15
2 2010-07-19T19:12:57.157 59
3 United States 2010-07-19T19:13:28.577 5
#it 4 Jacksonville, FL, USA 2010-07-19T19:13:31.617 135
5 New York, NY 2010-07-19T19:14:44.080 0
6 Tualatin, OR, United States 2010-07-19T19:15:59.303 18

It is possible for some questions to not have answers, and those questions will have an empty AcceptedAn-
swerld.

query = "SELECT Questions.Id AS Question_Id, Question_User.DisplayName AS User_DisplayName, Question_Us
FROM Posts AS Questions

LEFT JOIN Posts AS Answers

ON Questions.PostTypeId = 1 AND Answers.Id = Questions.AcceptedAnswerId

LEFT JOIN Users as Question_User

ON Questions.OwnerUserId = Question_User.Id

LEFT JOIN Users as Answer_Users

33

ON Answer Users.Id = Answers.OwnerUserId
WHERE Questions.PostTypeld = 1"
table = dbGetQuery(db, query)

head(table)

Question_Id User_DisplayName Question_User_JoinDate

1 1 csgillespie 2010-07-19T19:04:52.280
2 2 A Lion 2010-07-19T19:09:32.157
3 3 grokus 2010-07-19T19:08:29.070
4 4 Jay Stevens 2010-07-19T19:09:16.917
5 6 Shane 2010-07-19T19:03:57.227
6 7 EAMann 2010-07-19T19:11:57.393
Question_User_Location Question_Post_Date
1 Newcastle, United Kingdom 2010-07-19T19:12:12.510
2 2010-07-19T19:12:57.157
3 United States 2010-07-19T19:13:28.577
4 Jacksonville, FL, USA 2010-07-19T19:13:31.617
5 New York, NY 2010-07-19T19:14:44.080
6 Tualatin, OR, United States 2010-07-19T19:15:59.303
##

1

2

3

4

5 <p>Last year, I read a blog post from Brendan 0'Connor entitled <
6

Answer_DisplayName Answer_Id

1 Harlan 15

2 John L. Taylor 59

3 Jay Stevens 5

4 John L. Taylor 135

5 <NA> NA

6 Stephen Turner 18

##

1

2 <p>The assumption of normality is just the supposition that the underlying <a href="http://en.wiki;
3

4

Smirnov test, or the like. The two-sample Kolmogorov-Smirnov test is based on comparing difference
5

6

#i# Answer_Date
1 2010-07-19T19:19:46.160
2 2010-07-19T19:43:20.423
3 2010-07-19T19:14:43.050
4 2010-07-19T21:36:12.850
5 <NA>
6 2010-07-19T19:24:18.580

This table gives me the associated values for every single question in our Posts table. It gives me the
associated answer (if it exists), but also includes the row for it even if there is no accepted associated answer.
If this is the case, the row contains NA values. It is promising that table contains 204,370 rows since we know

34

that we have 204,370 questions. Now I am going to filter the table to only keep rows where the accepted
answer is not empty.

I want to know how many of these rows in the table above have an empty NA value for the Accepted Answer
Id. In my next sequel command, I will be expecting this same number of rows.

length(which(!is.na(table$Answer_Id)))

[1] 68004

I will make this change by doing a self join (inner join) between the post tables instead of left joining.

query = "SELECT Questions.Id AS Question_Id, Question_User.DisplayName AS User_DisplayName, Question_Us
FROM Posts AS Questions

JOIN Posts AS Answers

ON Questions.PostTypeId = 1 AND Answers.Id = Questions.AcceptedAnswerId

LEFT JOIN Users as Question_User

ON Questions.OwnerUserId = Question_User.Id

LEFT JOIN Users as Answer_Users

ON Answer_Users.Id = Answers.OwnerUserId

WHERE Questions.PostTypeld = 1"

table_updated = dbGetQuery(db, query)

head(table_updated)

Question_Id User_DisplayName Question_User_JoinDate

1 1 csgillespie 2010-07-19T19:04:52.280
2 2 A Lion 2010-07-19T19:09:32.157
3 3 grokus 2010-07-19T19:08:29.070
4 4 Jay Stevens 2010-07-19T19:09:16.917
5 7 EAMann 2010-07-19T19:11:57.393
6 10 A Lion 2010-07-19T19:09:32.157
Question_User_Location Question_Post_Date
1 Newcastle, United Kingdom 2010-07-19T19:12:12.510
2 2010-07-19T19:12:57.157
3 United States 2010-07-19T19:13:28.577
4 Jacksonville, FL, USA 2010-07-19T19:13:31.617
5 Tualatin, OR, United States 2010-07-19T19:15:59.303
6 2010-07-19T19:17:47.537
##

1

2

3

4

5 <p>I've been working on a new method for analyzing and parsing datasets to identify and isolate su
6

Answer_DisplayName Answer_Id

1 Harlan 15

2 John L. Taylor 59

3 Jay Stevens 5

4 John L. Taylor 135

5 Stephen Turner 18

6 chl 1887

35

##

1

2

3

4

Smirnov test, or the like. The two-sample Kolmogorov-Smirnov test is based on comparing difference:
5

6 <p>Maybe too late but I add my answer anyway...</p>\\\\n\\\\n<p>It depends on what you intend to d
Answer_Date

1 2010-07-19T19:19:46.160
2 2010-07-19T19:43:20.423
3 2010-07-19T19:14:43.050
4 2010-07-19T21:36:12.850
5 2010-07-19T19:24:18.580
6 2010-08-19T10:00:00.370

length(which(is.na(table_updated$Answer_Id)))

[11 O

Now we have verified that every single question in our new table has an associated accepted answer since
there are no null, empty, or 0-valued answer Ids.

Now I will verify in R if we have the same number of rows as there are valid accepted answer Ids. From
the last table we found above, we discovered that there are 68,004 valid Accepted Answer Ids so the total
number of rows in my current table needs to be equal to that.

nrow(table_updated)

[1] 68004

This means that there are 68,004 questions with accepted answers.

I am going to check with R to see how many questions have an accepted answer. I will do this by indexing
into the data frame that I get to see how many of the accepted answer Ids are equal to 0 since when we read
in the table from SQL, the empty values in the Accepted Answer Id column are coerced to 0.

posts_db = dbReadTable(db, 'Posts')

Warning: Column “AcceptedAnswerId’: mixed type, first seen values of type
integer, coercing other values of type string

Warning: Column “ViewCount : mixed type, first seen values of type integer,
coercing other values of type string

Warning: Column “OwnerUserId : mixed type, first seen values of type integer,
coercing other values of type string

Warning: Column “AnswerCount : mixed type, first seen values of type integer,
coercing other values of type string

36

Warning: Column "LastEditorUserId’: mixed type, first seen values of type
string, coercing other values of type integer

Warning: Column “ParentId’: mixed type, first seen values of type string,
coercing other values of type integer

Warning: Column “FavoriteCount : mixed type, first seen values of type string,
coercing other values of type integer

acc_answer_id = posts_db[which(posts_db$AcceptedAnswerId != 0),] #these are all of the accepted answer
nrow(acc_answer_id)

[1] 68005

In R, it tells us that there are 68,005 posts with accepted answer Ids. In sequel, we are one off. We need to
verify that our sequel count of 68,004 is correct. Why is R giving us one more value? In order to find this
one value that doesn’t match, I am going to do a set difference with the R answer and my sequel answer.

my_answer_accepted_answer_ids = table_updated$Answer_Id
R_answer = acc_answer_id$AcceptedAnswerId
setdiff (R_answer, my_answer_accepted_answer_ids)

[1] 8713

8713 is the value that is not included in our sequel table. This is the value of the accepted answer Id. We
will now look into why this is missing. This is or should be associated with the post that is the accepted
answer.

which(posts_db$Id == 8713)

integer (0)

For some reason, this Post Id doesn’t exist in our table since there is no index for which this accepted answer
Id is equal to a Post Id. In our sequel commands, we ensure that every accepted answer Id is equal to a
question post Id. Therefore, our sequel table doesn’t include this one value and that is the reason for the
number of rows being one off than our R answer. Therefore, we have concluded that the correct number of
accepted answers is 68,004 instead of 68,005 and our R verification helps us prove why we are right.

22. Determine the users that have only posted questions and never answered a question?
(Compute the table containing the number of questions, number of answers and the user’s
login name for this group.) How many are there? In order to get a better idea of how many users
there should be that satisfy this condition, I am going to first work in R. I want the collection of users who
have posted a question who haven’t posted an answer. This means that we will restrict our Posts table
output to posts which are associated with a PostTypeld of 1 and a PostTypeld of 2 to get questions and
answers respectively.

posts_db = dbReadTable(db, 'Posts')

Below I have found the number of users who have posted an answer. This does not count any of the users
more than once since we have found the unique number so there are 27,002 unique users who have posted
an answer.

37

num_users_who_posted_answer = length(unique(posts_db[which(posts_db$PostTypeld == 2),]$0wnerUserId))
num_users_who_posted_answer

[1] 27002

Below we have found the number of unique users who have ever posted a question. There are 88,924 unique
users who have posted a question.

num_users_who_posted_question = length(unique(posts_db[which(posts_db$PostTypeld == 1),]$0wnerUserId))
num_users_who_posted_question

[1] 88924

We will do the set difference to find all of the users who have ever posted at least 1 question who have NOT
ever posted an answer. Using set difference will remove all of the values which are in the collection of users
who have posted an answer and in the collection of users who have posted a question which is what we want
since we only want to keep users who have only posted a question and not an answer.

final user_list = setdiff (unique(posts_db[which(posts_db$PostTypeld == 1),]$0wnerUserId), unique(posts_
length(final_user_list)

[1] 76410

Therefore, as shown above, we will expect our data frame for this problem to contain 76410 rows.

Now I will find this table in sequel and I will be expecting 76,410 rows. I searched up how to do set difference
in SQL so I could follow the same logic that I did when finding the solution in R. I found that EXCEPT is
the SQLite equivalent: https://www.techonthenet.com/sqlite/except.php.

query = "SELECT DISTINCT Questions.OwnerUserId

FROM Posts AS Questions

WHERE Questions.PostTypeld = 1

EXCEPT

SELECT DISTINCT Answers.(OwnerUserId

FROM Posts AS Answers

WHERE Answers.PostTypeId = 2"
users_who_question_but_dont_answer = dbGetQuery(db, query)
head(users_who_question_but_dont_answer)

OwnerUserId

1 18
2 24
3 38
4 52
5 53
6 58

In order to confirm that we found the correct list of users who have posted at least one question but never
an answer, [am going to make sure that this list intersects fully with the solution I got in R. If I am correct,
the length of the intersection needs to be equal to the original length of the list which is 76,410. Below, I
have verified that the list of users is correct.

38

https://www.techonthenet.com/sqlite/except.php

length(intersect(final_user_list, users_who_question_but_dont_answer$OwnerUserId))

[1] 76410

Therefore, I can confidently conclude that there are 76410 users that have only posted questions and never
answered a question.

Now I will use this to create the entire table containing the number of questions, number of answers and the
user’s login name for this group.

query = "SELECT User_ID, Users.DisplayName, COUNT(Posts.OwnerUserId) AS Num_Questions FROM (SELECT DIST
FROM Posts AS Questions

WHERE Questions.PostTypeld = 1

EXCEPT

SELECT DISTINCT Answers.OwnerUserId

FROM Posts AS Answers

WHERE Answers.PostTypeld = 2)

LEFT JOIN Users ON User_ID = Users.Id

LEFT JOIN POSTS

WHERE Posts.PostTypeld = 1 AND User_ID = Posts.OwnerUserId
GROUP BY User_ID"

fin_tab = dbGetQuery(db, query)

head(fin_tab)

User_ID DisplayName Num_Questions

1 18 grokus 2
2 24 A Lion 2
3 38 EAMann 1
4 52 Alan H. 13
5 53 kyle 2
6 58 Preets 1

Below is my testing to see how to make the number of questions per unique user ID work.

UID Freq

1 18 2
2 24 2
3 38 1
4 52 13
5 53 2
6 58 1

Now I am going to add to the table the number of answers each of these users has posted. In R, below I will
verify that all of these users have posted 0 answers so I will add this to my dataframe.

query = "SELECT User_ID, Users.DisplayName, COUNT(Posts.OwnerUserId) AS Num_Questions, IIF(TRUE, 0, 0) .
FROM Posts AS Questions

WHERE Questions.PostTypeld = 1

EXCEPT

SELECT DISTINCT Answers.OwnerUserId

FROM Posts AS Answers

39

WHERE Answers.PostTypeld = 2)

LEFT JOIN Users ON User_ID = Users.Id

LEFT JOIN POSTS

WHERE Posts.PostTypeld = 1 AND User_ID = Posts.OwnerUserId
GROUP BY User_ID"

head (dbGetQuery (db, query))

User_ID DisplayName Num_Questions Num_Answers

1 18 grokus 2 0
2 24 A Lion 2 0
3 38 EAMann 1 0
4 52 Alan H. 13 0
5 53 kyle 0
6 58 Preets 1 0

I will do this check in R to make sure all of these users that we have found have not posted any answers.

answer_userids = posts_db[which(posts_db$PostTypeld == 2),]$0wnerUserld #user ids of those who answered
unique_answer_userids = unique(answer_userids)
length(unique_answer_userids)

[1] 27002

There are 27,002 unique users who have answered posts.

table(fin_tab$User_ID %in% unique_answer_userids)

##
FALSE
76410

This table output shows us that none of the unique user Ids of users who post questions and have posted
no answers (the column that we got from our data table above) are in the column of unique users who post
answers. Therefore, this means that all of our user ids have answered 0 questions since their id is never
considered as an answer id.

23. Compute the table with information for the 75 users with the most accepted answers. This
table should include: the user’s display name, the creation date, the location, the number of
badges they have won (the names of the badges as a single string), the dates of the earliest and
most recent accepted answer (as two fields), the (unique) tags for all the questions for which
they had the accepted answer (as a single string) In this problem, we want to find information for
the number of users who posted the most accepted answers. In order to do this, we will first have to find the
total number of accepted answer Ids which will be all of the values which have nonzero and non-null values
for answerlds, and then map that back to the Post Id to find the OwnerUserld of that answer post. Then
we need to find the OwnerUserld of this Answer Post Id where this is the Id of an accepted answer post and
then find the frequency table of how many times each of those Owner users have posted an accepted answer
1d.

This table gives us all of the accepted answers (since we are searching for all of the posts associated with
accepted answers Ids which are not equal to 0, and this will happen explicitly since accepted answer Ids from
questions will only associate with nonzero post answer Ids). The number of rows currently checks out since
we have found in a previous problem that there are 68,004 accepted answers.

40

query = "SELECT Questions.AcceptedAnswerId, Answers.Id AS Accepted_Answer_Post, Answers.(OwnerUserId AS .
FROM Posts AS Questions

JOIN Posts AS Answers

ON Questions.PostTypeld = 1 AND Answers.Id = Questions.AcceptedAnswerld

WHERE Questions.PostTypeld = 1"

a = dbGetQuery(db, query)

Warning: Column ~“Accepted_Answer_UserID_Poster : mixed type, first seen values
of type integer, coercing other values of type string

head(a)

AcceptedAnswerId Accepted_Answer_Post Accepted_Answer_UserID_Poster

1 15 15 6
2 59 59 39
3 5 5 23
4 135 135 39
5 18 18 36
6 1887 1887 930

print(nrow(a))

[1] 68004

The total number of rows in our table above is 68,004 which we know is the number of accepted answer
posts there are. Now we want to find how many times each user has posted an accepted answer post. We
need to make sure that we exclude the Accepted Answerlds which are 0 since those correlate to questions
which don’t have an accepted answer and we don’t want to count those.

query = "SELECT DISTINCT Accepted_Answer_UserID_Poster, COUNT(Accepted_Answer_UserID_Poster) FROM (SELE
FROM Posts AS Questions

JOIN Posts AS Answers

ON Questions.PostTypeId = 1 AND Answers.Id = Questions.AcceptedAnswerId

WHERE Questions.PostTypeld = 1)

WHERE Accepted_Answer_UserID_Poster != ''

GROUP BY Accepted_Answer_UserID_Poster

ORDER BY COUNT (Accepted_Answer_UserID_Poster) DESC LIMIT 75"

b = dbGetQuery(db, query)

head (b, 20)

#it Accepted_Answer_UserID_Poster COUNT(Accepted_Answer_UserID_Poster)

1 805 2335
2 919 1781
3 28500 1246
4 204068 1119
5 35989 1004
6 1352 985
7 7224 984
8 53690 872
9 173082 826
10 85665 814

41

11 686 718

12 7290 670
13 22311 611
14 11887 592
15 7486 590
16 164061 475
17 8013 452
18 247274 439
19 116195 424
20 28746 422

The frequency table above tells us how many times the user posted an accepted answer out of all the 68,004
accepted answer posts. I limit it to the top 75 users who posted the most accepted answers. Now I will
get the additional information for the users including the user’s display name, the creation date, and the
location.

query = "SELECT DISTINCT Accepted_Answer_UserID_Poster, Users.DisplayName, Users.CreationDate, Users.Lo
FROM Posts AS Questions

JOIN Posts AS Answers

ON Questions.PostTypeld = 1 AND Answers.Id = Questions.AcceptedAnswerld

WHERE Questions.PostTypeld = 1)

LEFT JOIN Users

ON Accepted_Answer_UserID_Poster = Users.Id

WHERE Accepted_Answer_UserID_Poster != ''

GROUP BY Accepted_Answer_UserID_Poster

ORDER BY Num_Ans DESC

LIMIT 75"

¢ = dbGetQuery(db, query)

head(c, 20)

Accepted_Answer_UserID_Poster DisplayName
1 805 Glen_b
2 919 whuber
3 28500 EdM
4 204068 gunes
5 35989 Tim
6 1352 Stephan Kolassa
##H 7 7224 Xi'an
8 53690 Richard Hardy
9 173082 Ben
10 85665 BruceET
11 686 Peter Flom
12 7290 gung - Reinstate Monica
13 22311 Sycorax
14 11887 kjetil b halvorsen
15 7486 Robert Long
16 164061 Sextus Empiricus
17 8013 Adam0
18 247274 Dave
19 116195 Noah
20 28746 Alecos Papadopoulos
CreationDate Location Num_Ans
1 2010-08-07T08:40:07.287 I'm right here 2335

42

2 2010-08-13T15:29:47.140 1781
3 2013-07-26T15:11:03.380 1246
4 2018-04-12T10:42:43.307 Cambridge, UK 1119
5 2013-12-10T21:19:06.223 Warsaw, Poland 1004
6 2010-09-18T10:55:08.240 Switzerland 985
7 2011-11-05T07:56:15.903 Paris, France 984
8 2014-08-08T10:57:13.613 Europe 872
9 2017-08-10T03:27:26.793 Canberra, Australia 826
10 2015-08-11T17:22:01.590 San Francisco Bay Area 814
11 2010-08-03T19:42:40.907 New York, NY 718
12 2011-11-09T04:43:15.613 Kingdom of Zhao 670
13 2013-03-20T23:59:56.610 Washington, DC, United States 611
14 2012-06-09T22:52:37.473 Bolivia 592
15 2011-11-20T14:30:04.120 Leeds, United Kingdom 590
16 2017-06-05T10:39:01.763 Sion, Switzerland 475
17 2011-12-14T21:46:36.197 Nakoja Abad 452
18 2019-05-08T13:23:32.777 439
19 2016-05-19T15:46:14.703 Cambridge, MA, United States 424
20 2013-08-02T14:24:21.923 422

Next I will start with the task of finding the number of badges these users have won. The tables that are
associated with Badges are BadgeClassMap and Badges. To find the number of badges that each user has
won, we will find the frequency of each of the user ids in the Badges table in the Userld column. In order
to join together all badge names in a string, I found this link with a similar idea that I am going to use:
https://www.sqlshack.com/string_ agg-function-in-sql/.

head(badges_db)

Id UserId Name Date Class TagBased
1 1 5 Teacher 2010-07-19T19:39:07.047 3 False
#t 2 2 6 Teacher 2010-07-19T19:39:07.220 3 False
3 3 8 Teacher 2010-07-19T19:39:07.330 3 False
4 4 23 Teacher 2010-07-19T19:39:07.437 3 False
5 b 36 Teacher 2010-07-19T19:39:07.593 3 False
6 6 37 Teacher 2010-07-19T19:39:07.687 3 False

badgeclassmap_db = dbReadTable(db, 'BadgeClassMap')
head (badgeclassmap_db)

id wvalue
1 1 Gold
2 2 Silver
3 3 Bronze

I am not going to filter the table by the TagBased attribute, and instead I will include all entries with both
True and False TagBased values. The way that I am interpreting this task for counting the number of badges
a user has won will be by including all badges for all badge class types of 1, 2, and 3 which correlate to Gold,
Silver, and Bronze Class values. Therefore, the unique number of badges a user has won will be equal to the
number of times that the userld appears in the table which is equivalent to the number of unique Badge Id
values there are for that specific user id. I won’t be splitting up my count based on class value or specific
badge name.

43

https://www.sqlshack.com/string_agg-function-in-sql/

query = "SELECT DISTINCT Accepted_Answer_UserID_Poster, Users.DisplayName, Users.CreationDate, Users.Lo
FROM Posts AS Questions

JOIN Posts AS Answers

ON Questions.PostTypeld = 1 AND Answers.Id = Questions.AcceptedAnswerld
WHERE Questions.PostTypeld = 1)

LEFT JOIN Users

ON Accepted_Answer_UserID_Poster = Users.Id

WHERE Accepted_Answer_UserID_Poster != ''

GROUP BY Accepted_Answer_UserID_Poster

ORDER BY Num_Ans DESC

LIMIT 75"

dg = dbGetQuery(db, query)

head(dg, 20)

Accepted_Answer_UserID_Poster DisplayName
##H 1 805 Glen_b
2 919 whuber
3 28500 EdM
4 204068 gunes
5 35989 Tim
6 1352 Stephan Kolassa
##H 7 7224 Xi'an
8 53690 Richard Hardy
9 173082 Ben
10 85665 BruceET
11 686 Peter Flom
12 7290 gung - Reinstate Monica
13 22311 Sycorax
14 11887 kjetil b halvorsen
15 7486 Robert Long
16 164061 Sextus Empiricus
17 8013 AdamO
18 247274 Dave
19 116195 Noah
20 28746 Alecos Papadopoulos
CreationDate Location Num_Ans
1 2010-08-07T08:40:07.287 I'm right here 2335
2 2010-08-13T15:29:47.140 1781
3 2013-07-26T15:11:03.380 1246
4 2018-04-12T10:42:43.307 Cambridge, UK 1119
5 2013-12-10T21:19:06.223 Warsaw, Poland 1004
6 2010-09-18T10:55:08.240 Switzerland 985
7 2011-11-05T07:56:15.903 Paris, France 984
8 2014-08-08T10:57:13.613 Europe 872
9 2017-08-10T03:27:26.793 Canberra, Australia 826
10 2015-08-11T17:22:01.590 San Francisco Bay Area 814
11 2010-08-03T19:42:40.907 New York, NY 718
12 2011-11-09T04:43:15.613 Kingdom of Zhao 670
13 2013-03-20T23:59:56.610 Washington, DC, United States 611
14 2012-06-09T22:52:37.473 Bolivia 592
15 2011-11-20T14:30:04.120 Leeds, United Kingdom 590
16 2017-06-05T10:39:01.763 Sion, Switzerland 475
17 2011-12-14T21:46:36.197 Nakoja Abad 452

44

18 2019-05-08T13:23:32.777 439
19 2016-05-19T15:46:14.703 Cambridge, MA, United States 424
20 2013-08-02T14:24:21.923 422

This is how I created a View to more easily organize my table: https://www.w3schools.com/sql/sql_view.asp

query = "CREATE VIEW [tab2] AS

SELECT DISTINCT Accepted_Answer_UserID_Poster, Users.DisplayName, Users.CreationDate, Users.Location, C
FROM Posts AS Questions

JOIN Posts AS Answers

ON Questions.PostTypeId = 1 AND Answers.Id = Questions.AcceptedAnswerId
WHERE Questions.PostTypeld = 1)

LEFT JOIN Users

ON Accepted_Answer_UserID_Poster = Users.Id

WHERE Accepted_Answer_UserID_Poster != ''

GROUP BY Accepted_Answer_UserID_Poster

ORDER BY Num_Ans DESC

LIMIT 75"

dbExecute(db, query)

[11 ©

query = "SELECT T.*, M.Freq FROM [tab2] AS T

LEFT JOIN (SELECT DISTINCT Badges.UserId AS BID, COUNT(Badges.UserId) AS Freq FROM Badges GROUP BY BID)
ON T.Accepted_Answer_UserID_Poster = M.BID"

output_tab = dbGetQuery(db, query)

head (output_tab)

Accepted_Answer_UserID_Poster DisplayName CreationDate
1 805 Glen_b 2010-08-07T08:40:07.287
2 919 whuber 2010-08-13T15:29:47.140
3 28500 EdM 2013-07-26T15:11:03.380
4 204068 gunes 2018-04-12T10:42:43.307
5 35989 Tim 2013-12-10T21:19:06.223
6 1352 Stephan Kolassa 2010-09-18T10:55:08.240
Location Num_Ans Freq
1 I'm right here 2335 1605
2 1781 1942
3 1246 318
4 Cambridge, UK 1119 129
5 Warsaw, Poland 1004 717
6 Switzerland 985 638

Now the output table printed above gives us the user’s display name, the location, the creation date, and
the number of badges they have won — in the way that I have interpreted it which is to include the badges
for all badge classes. Next, I need to combine all of the unique badge names that the user won.

query = "CREATE VIEW [tab3] AS SELECT T.*, M.Freq FROM [tab2] AS T

LEFT JOIN (SELECT DISTINCT Badges.UserId AS BID, COUNT(Badges.UserId) AS Freq FROM Badges GROUP BY BID)
ON T.Accepted_Answer_UserID_Poster = M.BID"

dbExecute(db, query)

45

https://www.w3schools.com/sql/sql_view.asp

[1]1 ©

#create a view to store this progres of the table

Now I am going to figure out how to merge the badge names for each distinct user. Below we get the table
of all unique badge names for every single user in the Badges table. After this step, I will need to limit it to
only take the strings that are in my [tab3] table View that I made.

query = "SELECT DISTINCT Badges.UserId, GROUP_CONCAT(DISTINCT Badges.Name) AS Badge_Names
FROM Badges

GROUP BY Badges.UserId"

head (dbGetQuery(db, query))

Userld
##
##
##
##
##
##
##
##
##
##
##
##
##

O WN -
~N o o WwWN

Teacher,Student ,Editor,Supporter,Self-Learner,Commentator,Mortarboard,Organizer,Critic,Nice Questi

o O W N

query = "SELECT C.*, P.Badge_Names FROM [tab3] AS C

LEFT JOIN (SELECT DISTINCT Badges.UserId, GROUP_CONCAT(DISTINCT Badges.Name) AS Badge_Names
FROM Badges

GROUP BY Badges.UserId) AS P

ON C.Accepted_Answer_UserID_Poster = P.UserId"

new_output_tab = dbGetQuery(db, query)

head (new_output_tab)

Accepted_Answer_UserID_Poster DisplayName CreationDate
1 805 Glen_b 2010-08-07T08:40:07.287
2 919 whuber 2010-08-13T15:29:47.140
3 28500 EdM 2013-07-26T15:11:03.380
4 204068 gunes 2018-04-12T10:42:43.307
5 35989 Tim 2013-12-10T21:19:06.223
6 1352 Stephan Kolassa 2010-09-18T10:55:08.240
Location Num_Ans Freq

1 I'm right here 2335 1605

1

2 1781 1942
3 1246 318
4 Cambridge, UK 1119 129
5 Warsaw, Poland 1004 717

6 Switzerland 985 638

##

1 Teacher,Editor,Supporter,Yearling,Commentator,Critic,Student,Scholar,Nice Answer,Analytical,Custod

46

query = "CREATE VIEW [tab4] AS SELECT C.*, P.Badge_Names FROM [tab3] AS C

LEFT JOIN (SELECT DISTINCT Badges.UserId, GROUP_CONCAT(DISTINCT Badges.Name) AS Badge_Names
FROM Badges

GROUP BY Badges.UserId) AS P

ON C.Accepted_Answer_UserID_Poster = P.UserId"

dbExecute(db, query)

[11 ©

In our table, the owner user ID will guide us to the actual answer posts themselves. From there, I will look
into CreationDate of them all and find the MIN and MAX. Below in our tab4 table, we have the user’s
display name, the creation date of the user, the location of the user, the number of badges that they have
won (which is in the column named Freq), the Num_ Ans attribute which tells us how many times this user
has posted an accepted answer. This is used to find the top 75 users since we order by this column. I also
have the names of the badges in a single string in the Badge Names column.

head (dbGetQuery(db, "SELECT * FROM [tab4]"))

Accepted_Answer_UserID_Poster DisplayName CreationDate
1 805 Glen_b 2010-08-07T08:40:07.287
2 919 whuber 2010-08-13T15:29:47.140
3 28500 EdM 2013-07-26T15:11:03.380
4 204068 gunes 2018-04-12T10:42:43.307
5 35989 Tim 2013-12-10T21:19:06.223
6 1352 Stephan Kolassa 2010-09-18T10:55:08.240
Location Num_Ans Freq

1 I'm right here 2335 1605

2 1781 1942

3 1246 318

4 Cambridge, UK 1119 129

5 Warsaw, Poland 1004 717

6 Switzerland 985 638

##

1 Teacher,Editor,Supporter,Yearling,Commentator,Critic,Student,Scholar,Nice Answer,Analytical,Custod
2

3

4

5

6

Now what we have to do is find the dates of the earliest and most recent accepted answers that the user
posted along with the unique tags for all the questions for which they had the accepted answers. We have
the user ID who posted the accepted answers, and we need to now go through these answers and find the
min and max creation date.

47

query = "SELECT T.Accepted_Answer_UserID_Poster, MIN(DATETIME(Answers.CreationDate)) AS Earliest, MAX(D.
FROM [tab4] AS T

JOIN Posts AS Answers

WHERE T.Accepted_Answer_UserID_Poster = Answers.(OwnerUserId AND Answers.PostTypeld = 2

Now that we are done using our tables, we can get rid of them.

query = "DROP VIEW tab2"
dbExecute(db, query)

[1]1 O

query = "DROP VIEW tab3"
dbExecute(db, query)

[11 O

query = "DROP VIEW tab4"
dbExecute(db, query)

[11 ©

24. How many questions received no answers (accepted or unaccepted)? How many questions
had no accepted answer? Saisha Hongal helped me figure out this problem, thank you Saisha! First
I will find out how many questions received no answers. This will mean that I am going to find all the
question posts which have an answer count of 0 since that means that there are no affiliated answers with
that question.

query = "SELECT COUNT(Posts.Id) AS Num_Questions_With_No_Answers
FROM Posts

WHERE Posts.PostTypeld = 1 AND Posts.AnswerCount = 0"

al = dbGetQuery(db, query)

al

Num_Questions_With_No_Answers
1 66970

Now I am going to find out how many questions had no accepted answers. There could be questions
that have answers but not accepted answers, but the way that I am interpreting this question is to find the
number of questions that have no accepted answers. This means that they will have an empty value for the
AcceptedAnswerld part of the table. The first way will be to find questions with no accepted answers have
an empty value in the AcceptedAnswerld column.

query = "SELECT COUNT(Posts.Id) AS Num_Questions_With_No_Accepted_Answer
FROM Posts

WHERE PostTypelId = 1 AND AcceptedAnswerId = ''"

dbGetQuery(db, query)

Num_Questions_With_No_Accepted_Answer
##t 1 136365

Therefore, we can conclude that there are 136,365 questions that have no accepted answer.

48

25. What is the distribution of answers per posted question? I am going to approach the problem
in the following way: -Each post is associated with a Parent ID if and only if the post is an answer (meaning
if and only if the PostTypeld = 2) -A parent ID associated with an answer post is the Id referring back to
the question -Therefore, in order to find the distribution of answers per posted question, I am going to find
the frequency table of how many times each Parentld occurs. For example, if there is a Parentld 99989 that
occurs two times, that means that there are two answers to the question 99989

Another way that we can approach this problem is by extracting the answer count values that are present
for all the questions in the posts category. I will do this method first, and then verify my code with the
approach that I wrote first.

query = "

SELECT DISTINCT Posts.AnswerCount, COUNT(Posts.AnswerCount) AS Frequency
FROM Posts

WHERE Posts.PostTypeld = 1

GROUP BY AnswerCount

freq_table = dbGetQuery(db, query)

head(freq_table)

AnswerCount Frequency

1 0 66970
2 1 98602
3 2 27191
4 3 7246
5 4 2408
6 5 905

Above I have the distribution of the number of answers there are for all posted questions. I am going to
make a plot of this data to more clearly see the distribution.

barplot (freq_table$Frequency, "AnswerCount", "Frequency of Posts with the Number of Answe:
0.9)

49

Distribution of Answers per Posted Question

0000 —

0000 —

0000 —

0000 —

R

O N < © 0 O N <« © 0 O N < ©
= " < N N N N N

AN N~ O
M M <~

Frequency of Posts with the,Numbgy of Answers

153

AnswerCount

Here is another way that we can plot the data: https://www.learnbyexample.org/r-plot-function/

plot(freq_table, "h'")

50

https://www.learnbyexample.org/r-plot-function/

8e+04
|

>
o p—
[
g
<
g 9
=8
o
S Mho |
2 | | |
0 50 100 150
AnswerCount

In order to verify if my table above makes sense, the total sum of the frequency should add up to the total
number of questions there are in our Posts table. In previous questions, we found that this value is equal to
204,370.

query = " SELECT SUM(Frequency) FROM

(

SELECT DISTINCT Posts.AnswerCount, COUNT(Posts.AnswerCount) AS Frequency
FROM Posts

WHERE Posts.PostTypeld = 1

GROUP BY AnswerCount

)

dbGetQuery (db, query)

SUM(Frequency)
1 204370

In order to verify if the results above are correct, I am now going to find this same frequency table with
another method by counting the number of occurrences for each Parentld, and then finding the frequency
of this resulting query. Considering the structure and the schema of this database, both method should give
us the same answer, and this is how I will verify if I am correct.

Not all questions have answers, and this makes sense since some questions have an AnswerCount of 0. For
those questions with no answers, there will be no Parentlds that associate with those questions. In this case,
we will expect that the number of unique ParentIds (which will be the number of questions with answers)
will be less than the number of questions. This is because some questions won’t have Parentlds. If the

o1

Parentld is 0, that means that R coerced the empty Parentld to be 0 since all of the other values are of type
int. Therefore, I am going to make sure that I don’t include any rows where the Parentld is 0 since that
means that those are for posts which are questions.

query = "SELECT DISTINCT Posts.ParentId, COUNT(Posts.ParentId) AS Freq
FROM Posts

WHERE Posts.ParentId != O AND Posts.PostTypeld = 2

GROUP BY Posts.ParentId"

f = dbGetQuery(db, query)

head (f)

ParentId Freq

1 1 6
2 2 7
3 3 19
4 4 5
5 6 20
6 7 25

head (dbGetQuery(db, "SELECT COUNT(Freq) AS Num_Questions_With_Answers FROM (SELECT DISTINCT Posts.Paren
FROM Posts

WHERE Posts.ParentId != O AND Posts.PostTypeld = 2

GROUP BY Posts.ParentId)"))

Num_Questions_With_Answers
1 137400

We are finding the number of questions with answers by finding the number of rows in our table which also
correlates to the unique Parentlds. According to the query above, there are 137,400 unique Parentlds which
correlates to 137,400 questions that have answers.

Now we will find the distribution of the number of answers for all posted questions. We are excluding
questions which have 0 answers since those don’t have valid Parentlds (the Parentld is empty since it is a
question and not an answer).

query = "SELECT DISTINCT Freq, COUNT(Freq) AS Num_Posts FROM (SELECT DISTINCT Posts.ParentId, COUNT(Pos
FROM Posts

WHERE Posts.ParentId != O AND Posts.PostTypeld = 2

GROUP BY Posts.ParentId) GROUP BY Freq"

head (dbGetQuery (db, query))

Freq Num_Posts

##t 1 1 98602
2 2 27191
3 3 7246
4 4 2408
5 5 905
6 6 401

Interpreting the table above, this tells us that there are 98,602 posts with 1 answer.

To confirm that this is right, the number of of this frequency table above needs to be equal to the total
number of questions with at least 1 answer. We have verified this below where the sum of this frequency

52

table is equal to 137,400. From the first frequency table we made above for this problem, we found that
66970 questions have 0 answers. We will subtract this from the total number of questions there are, which
we found to be 204,370.

204370 (total number of questions) - 66970 (questions with 0 answers) = 137400 (number of questions with
at least 1 answer). Therefore, we have verified that we have the right frequency table for the distribution of
answers per posted question.

query = "SELECT SUM(Num_Posts) FROM (SELECT DISTINCT Freq, COUNT(Freq) AS Num_Posts FROM (SELECT DISTIN
FROM Posts

WHERE Posts.ParentId != O AND Posts.PostTypeld = 2

GROUP BY Posts.ParentId) GROUP BY Freq)"

head (dbGetQuery(db, query))

SUM(Num_Posts)
1 137400

26. What is the length of time for a question to receive an answer? To obtaining an accepted
answer? [will first work on figuring out the length of time for a question to receive an accepted answer.
This should contain 68,004 rows since we discovered earlier that there are 68,004 questions with accepted
answers. In order to do this problem, I get the question ID, the question’s creation date, and I find the
creation date of the affiliated accepted answer.

Below I am verifying that the total number of questions that have an accepted answer is 68,004.

query = "SELECT COUNT(*) FROM (SELECT Question.Id AS QuestionID, COUNT(Answer.Id) AS Num_Total_Answers
FROM Posts AS Question

JOIN Posts AS Answer

ON Question.Id = Answer.ParentId AND Answer.PostTypeld = 2 AND Answer.Id = Question.AcceptedAnswerId
GROUP BY Question.Id)"

dbGetQuery(db, query)

COUNT (%)
1 68004

For this problem, I worked with Saisha Hongal to get some help on the approach. We started off by getting
all of the questions that correlate to questions which have accepted answers, and then collected the creation
date of this question. Now we need to traverse the creation date for the accepted answer. This wil be the
one creation date after we correctly choose all tuples from our joining process.

We need to do a self join to get these question and answer pairs, and we need to make sure that the questions
are of type question (by using the PostTypeld), and we need to make sure that the Answer has the Id of
the question’s accepted answer Id. This will ensure that all of the answers we find are of type PostTypeld 2
since only accepted answers will be linked in the Question AcceptedAnswerld category.

In order to find the duration, I used https://www.techonthenet.com/sqlite/functions/julianday.php for JU-
LIANDAY.

query = "SELECT Question.Id AS QuestionId, Question.CreationDate AS Question_Ask_Date, MIN(Answers.Crea
FROM Posts AS Question

JOIN Posts AS Answers

ON Question.PostTypelId = 1 AND Answers.Id = Question.AcceptedAnswerId

WHERE Answers.PostTypeld = 2

GROUP BY Question.Id"

head (dbGetQuery(db, query))

53

https://www.techonthenet.com/sqlite/functions/julianday.php

QuestionId Question_Ask_Date Answer_Post_Date Duration_Days

##t 1 1 2010-07-19T19:12:12.510 2010-07-19T19:19:46.160 5.250579e-03
2 2 2010-07-19T19:12:57.157 2010-07-19T19:43:20.423 2.110262e-02
3 3 2010-07-19T19:13:28.577 2010-07-19T19:14:43.050 8.619558e-04
4 4 2010-07-19T19:13:31.617 2010-07-19T21:36:12.850 9.908835e-02
5 7 2010-07-19T19:15:59.303 2010-07-19T19:24:18.580 5.778669e-03
6 10 2010-07-19T19:17:47.537 2010-08-19T10:00:00.370 3.061265e+01

In order to check if the correct accepted answer post date was found, I manually checked the post table. For
example, for the question id 10, I checked the Posts table to find the associated accepted answer Id.

ansId = posts_db[which(posts_db$Id == 10),]$AcceptedAnswerIld
print("Accepted Answer Creation Date for Question Id 10")

[1] "Accepted Answer Creation Date for Question Id 10"

posts_db[which(posts_db$Id == ansId),]$CreationDate

[1] "2010-08-19T10:00:00.370"

This checks out in our table.

Now I will generalize this problem to find the length of time for a question to receive an answer in general
where the answer does not need to be an accepted answer. In R, I am going to verify how many rows I will
be expecting in my sequel output. I am going to get rid of the empty ParentId value since that correlates to
all of the entries which could be types of posts other than answers which don’t have a parentld attribute so
they are empty. Therefore, I will be expecting 137,400 rows in my output.

length(unique (posts_db[which(posts_db$ParentId !=''),]$ParentId))

[1] 137400

query = "SELECT DISTINCT(Question.Id) AS Question_ID, DATETIME(Question.CreationDate) AS Question_Post_|
MIN(DATETIME (Answer.CreationDate)) AS Fastest_Answer_Post_Date, JULIANDAY(MIN(DATETIME(Answer.CreationD
FROM Posts as Question

JOIN Posts AS Answer

ON Question.Id = Answer.ParentId AND Question.PostTypeld = 1 AND Answer.PostTypeld = 2

GROUP BY Question.ID

ORDER BY Question.ID ASC"

head (dbGetQuery(db, query))

Question_ID Question_Post_Date Fastest_Answer_Post_Date Duration_In_Days

1 1 2010-07-19 19:12:12 2010-07-19 19:19:46 0.0052546295
2 2 2010-07-19 19:12:57 2010-07-19 19:24:35 0.0080787037
3 3 2010-07-19 19:13:28 2010-07-19 19:14:43 0.0008680555
4 4 2010-07-19 19:13:31 2010-07-19 21:31:53 0.0960879629
5 6 2010-07-19 19:14:44 2010-07-19 19:18:56 0.0029166662
6 7 2010-07-19 19:15:59 2010-07-19 19:18:41 0.0018749996

54

27. How many answers are typically received before the accepted answer? For this problem, I
was getting really stuck on it and Summer Monga and Saisha Hongal helped me in my thinking approach.

First I will find the number of answers for each question. This includes the non accepted and accepted
answers — if the accepted answer exists.

query = "SELECT Question.Id AS QuestionID, COUNT(Answer.Id) AS Num_Total_Answers
FROM Posts AS Question

JOIN Posts AS Answer

ON Question.Id = Answer.ParentId AND Answer.PostTypeld = 2

GROUP BY Question.Id"

head (dbGetQuery (db, query))

QuestionID Num_Total_Answers

#it 1 1 6
2 2 7
3 3 19
4 4 5
5 6 20
6 7 25

We know that 137,400 correlates to the number of questions with at least one answer, and we don’t know
if these answers are accepted or not but we know that these questions have answers. We can order the
questions by ascending creation date so we know that wherever the accepted answer ID is, the number of
unaccepted answers before that will have a creation date less than the accepted answer creation date.

Only Answers have a Parentld since that will point towards the question to which it is answering, and only
Questions will have AcceptedAnswerlds — if they exist.

We are going to use the Parentlds as the indexes for the questions since that is how we find every question
that has an answer. Then, we are going to count the distinct number of question Ids there are after joining
all of our tuples to make sure that we keep the rows in which the accepted answer is the answer we are
counting for. The first joining gave us the number of answers in total including the accepted answer.

query = "SELECT Question.ParentId AS Question_Id, COUNT(DISTINCT Question.Id) AS Num_Unaccepted_Answers
FROM Posts AS Question

JOIN Posts AS Answer

LEFT JOIN Posts AS Bf ON Answer.AcceptedAnswerId = Bf.Id

WHERE Question.ParentId = Answer.Id AND Answer.AcceptedAnswerId != '' AND Answer.PostTypeld = 1

AND Question.CreationDate <= Bf.CreationDate

GROUP BY Question_Id

ORDER BY Question_Id ASC"

head (dbGetQuery (db, query))

Question_Id Num_Unaccepted_Answers_Before_Accepted

1 1 1
2 2 2
3 3 1
4 4 2
5 7 2
6 10 3

Therefore, in the next go we need to subtract 1 from the count of question ids in order to get rid of the count
of the accepted answer id since we only want to know how many unaccepted answers come before. Below is
the final answer.

95

query = "SELECT Question.ParentId AS Question_Id, COUNT(DISTINCT Question.Id)-1 AS Num_Unaccepted_Answe:
FROM Posts AS Question

JOIN Posts AS Answer

LEFT JOIN Posts AS Bf ON Answer.AcceptedAnswerId = Bf.Id

WHERE Question.ParentId = Answer.Id AND Answer.AcceptedAnswerId != '' AND Answer.PostTypeld = 1

AND Question.CreationDate <= Bf.CreationDate

GROUP BY Question_Id

ORDER BY Question_Id ASC"

head (dbGetQuery(db, query))

Question_Id Num_Unaccepted_Answers_Before_Accepted

1 1 0
2 2 1
3 3 0
4 4 1
5 7 1
6 10 2

56

	Homework 3: StackExchange
	Questions
	Overall Notes on the Tables

	Required Questions

